Moduli Spaces, Motives, Periods, and Scattering Amplitudes

模空间、动机、周期和散射幅度

基本信息

  • 批准号:
    1564385
  • 负责人:
  • 金额:
    $ 19.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Recently, new ideas in pure mathematics have had a strong impact on theoretical physics, and vice versa. In particular, the ideas of one of the most sophisticated areas of mathematics, the so-called theory of motives, which is part of algebraic geometry, found application in the calculation of scattering amplitudes from the data observed in experiments. On the other hand, the general notion of quantization that originated in theoretical physics has found concrete realizations in many of areas of pure mathematics. Using these new insights, this project will investigate several concrete questions in number theory, algebraic geometry, and representation theory. This project involves research in several related topics. In one direction, the project will study scattering amplitudes in quantum field theory by using theory of mixed motives and theory of cluster varieties. In a second direction, the project will further develop the on-shell approach to scattering amplitudes, with the goal of finding effective ways to calculate scattering amplitudes. In a third direction, the project will study a quantum field theory approach to mixed Hodge theory and develop quantum Hodge field theory. In a fourth direction, the project will study Donaldson-Thomas invariants of three-dimensional Calabi-Yau categories relevant to representation theory and geometry. In a fifth direction the investigator will continue work on moduli spaces of local systems on two-dimensional surfaces and its quantization, and on the relationship with representation theory and mirror symmetry. In particular, the investigator will study the hyperkähler structure of the moduli spaces of local systems on topological surfaces, and moduli spaces of non-commutative local systems on surfaces. In a final direction, the theory of hyperbolic three-dimensional manifolds can be viewed as the study of certain local systems on three-dimensional manifolds with values in one of the simplest complex Lie groups. The project aims to develop a similar theory for all complex reductive Lie groups, as well as its quantum analog.
近年来,纯数学中的新思想对理论物理产生了强烈的影响,反之亦然。特别是数学中最复杂的领域之一,即所谓的动机理论,它是代数几何的一部分,在根据实验中观察到的数据计算散射振幅时得到了应用。另一方面,起源于理论物理学的量子化的一般概念在纯数学的许多领域得到了具体的实现。利用这些新的见解,本项目将研究数论、代数几何和表示理论中的几个具体问题。这个项目涉及几个相关主题的研究。一方面,本项目将利用混合动机理论和簇变理论研究量子场论中的散射振幅。在第二个方向上,该项目将进一步发展散射振幅的on-shell方法,目标是找到计算散射振幅的有效方法。第三个方向,研究混合霍奇理论的量子场论方法,发展量子霍奇场论。在第四个方向上,该项目将研究与表示理论和几何相关的三维Calabi-Yau类别的Donaldson-Thomas不变量。在第五个方向上,研究者将继续研究二维表面上局部系统的模空间及其量化,以及与表示理论和镜像对称的关系。特别地,研究者将研究拓扑曲面上局部系统的模空间的hyperkähler结构,以及曲面上非交换局部系统的模空间。在最后一个方向上,双曲三维流形理论可以看作是对三维流形上的某些局部系统的研究,其值在最简单的复李群之一上。该项目旨在为所有复杂约化李群及其量子模拟发展一个类似的理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Goncharov其他文献

On Smoothness of the Green Function for the Complement of a Rarefied Cantor-Type Set
  • DOI:
    10.1007/s00365-010-9092-9
  • 发表时间:
    2010-04-08
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Muhammed Altun;Alexander Goncharov
  • 通讯作者:
    Alexander Goncharov
A tribute to Sasha Beilinson
  • DOI:
    10.1007/s00029-018-0399-x
  • 发表时间:
    2018-02-16
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Michael Finkelberg;Dennis Gaitsgory;Alexander Goncharov;Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
Orthogonal Polynomials on Generalized Julia Sets
  • DOI:
    10.1007/s11785-017-0669-1
  • 发表时间:
    2017-04-05
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Gökalp Alpan;Alexander Goncharov
  • 通讯作者:
    Alexander Goncharov
Donaldson–Thomas transformations of moduli spaces of G-local systems
  • DOI:
    10.1016/j.aim.2017.06.017
  • 发表时间:
    2018-03-17
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander Goncharov;Linhui Shen
  • 通讯作者:
    Linhui Shen
The Galois group of the category of mixed Hodge–Tate structures
  • DOI:
    10.1007/s00029-018-0393-3
  • 发表时间:
    2018-02-09
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Alexander Goncharov;Guangyu Zhu
  • 通讯作者:
    Guangyu Zhu

Alexander Goncharov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Goncharov', 18)}}的其他基金

Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
  • 批准号:
    2320309
  • 财政年份:
    2023
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
  • 批准号:
    2153059
  • 财政年份:
    2022
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
Thermal conductivity of lower mantle minerals and outer core alloys studied by combined fast pulsed laser and optical spectroscopy techniques
结合快速脉冲激光和光谱技术研究下地幔矿物和外核合金的热导率
  • 批准号:
    2049127
  • 财政年份:
    2021
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
Polylogarithms, Motives, L-Functions, and Quantum Geometry of Moduli Spaces
模空间的多对数、动机、L 函数和量子几何
  • 批准号:
    1900743
  • 财政年份:
    2019
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Thermal conductivity of Deep Earth's materials studied by combined fast pulsed laser and optical spectroscopy techniques
通过快速脉冲激光和光谱技术相结合研究地球深部材料的热导率
  • 批准号:
    1763287
  • 财政年份:
    2018
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of integrated optical spectroscopy system at the Advanced Photon Source
MRI:在先进光子源处获取集成光谱系统
  • 批准号:
    1531583
  • 财政年份:
    2015
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Thermal conductivity of Deep Earth's materials studied by fast pulsed laser techniques
通过快速脉冲激光技术研究地球深部材料的热导率
  • 批准号:
    1520648
  • 财政年份:
    2015
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
Development of an Ultrafast Laser Instrument for Probing Earth and Planetary Materials under Extreme Pressures and Temperatures
开发用于在极端压力和温度下探测地球和行星材料的超快激光仪器
  • 批准号:
    1128867
  • 财政年份:
    2013
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
MODULI SPACES, MOTIVES, PERIODS and SCATTERING AMPLITUDES
模空间、动机、周期和散射幅度
  • 批准号:
    1301776
  • 财政年份:
    2013
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant

相似海外基金

Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
  • 批准号:
    2153059
  • 财政年份:
    2022
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
Polylogarithms, Motives, L-Functions, and Quantum Geometry of Moduli Spaces
模空间的多对数、动机、L 函数和量子几何
  • 批准号:
    1900743
  • 财政年份:
    2019
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Cohomological Invariants and Motives of Classifying Spaces
上同调不变量和分类空间的动机
  • 批准号:
    1801530
  • 财政年份:
    2018
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
Moduli Spaces, Derived Categories, and Motives
模空间、派生范畴和动机
  • 批准号:
    1601940
  • 财政年份:
    2016
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
MODULI SPACES, MOTIVES, PERIODS and SCATTERING AMPLITUDES
模空间、动机、周期和散射幅度
  • 批准号:
    1301776
  • 财政年份:
    2013
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
Polylogarithms, moduli spaces, Hodge theory, motives and L-functions
多对数、模空间、Hodge 理论、动机和 L 函数
  • 批准号:
    1059129
  • 财政年份:
    2010
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
Polylogarithms, moduli spaces, Hodge theory, motives and L-functions
多对数、模空间、Hodge 理论、动机和 L 函数
  • 批准号:
    0968234
  • 财政年份:
    2010
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
Polylogarithms, Moduli Spaces, Mixed Motives and L-Functions
多对数、模空间、混合动机和 L 函数
  • 批准号:
    0653721
  • 财政年份:
    2007
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
Topology and motives associated to moduli spaces of curves
与曲线模空间相关的拓扑和动机
  • 批准号:
    0706955
  • 财政年份:
    2007
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Polylogarithms, Moduli Spaces, Mixed Motives, and L-Functions
多对数、模空间、混合动机和 L 函数
  • 批准号:
    0400449
  • 财政年份:
    2004
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了