Polylogarithms, Motives, L-Functions, and Quantum Geometry of Moduli Spaces
模空间的多对数、动机、L 函数和量子几何
基本信息
- 批准号:1900743
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns research at the boundary of Number Theory and Algebraic Geometry and extends to several other branches of mathematics. In particular it concerns work on polynomial equations and their solutions. Associated to the solutions of a collection of polynomial equations is a mathematical object, their zeta function. This research will investigate a deep collection of conjectures concerning these zeta functions, made by Alexander Beilinson, Don Zagier and others 30-40 years ago. These investigations also have consequences for theoretical Physics. Another aspect of the project is that it will support the training of graduate students in this area of research.Any system of polynomial equations with integral coefficients gives rise to a function of one complex variable, the Zeta Function Z(s). It encodes in a very mysterious way the most important characteristics of the space of solutions. In particular, the special values of the zeta function Z(s) at the integral values of s should be expressed as periods, that is integrals of certain specific type. The PI is going to study the special values of the zeta functions, relating them to the very classical mathematical objects, going back to Euler - the classical polylogarithm functions, which generalize the logarithm function. The technique the PI is using came from several parts of Mathematics and Mathematical Physics, such as the theory of motives, algebraic K-theory on one hand, and cluster varieties and their quantization on the other. The very existence of deep connections between polylogarithms and cluster varieties is surprising. It will have many applications far beyond Algebraic Geometry and Number Theory, e.g. in the investigation of Scattering Amplitudes in Theoretical Physics. The PI will continue his work on quantum geometry of various moduli spaces and their applications in Algebraic Geometry, Mathematical Physics and Number Theory, including the study of classical and quantum polylogarithms, special values of L-functions, motivic Galois groups, Quantum Hodge Field Theory, cluster structure and quantization of moduli spaces of local systems. The main priorities of the project are the following:a) To use the relationship between cluster varieties and polylogarithms to prove Zagier's conjecture on the special values of the Dedekind zeta function at least for s=5, and relate the motivic cohomology to the cohomology of the polylogarithmic motivic complexes. b) To develop the theory of quantum multiple polylogarithms, providing a quantum deformation of the periods of the prounipotent completion of the motivic fundamental group of the punctured projective line. c) To give a comprehensive treatment of the cluster structure of various moduli related to the moduli spaces of G-local systems on surfaces. Apply this to quantization of these moduli spaces, representation theory of quantum groups, mirror symmetry and Mathematical Physics. d) Develop Quantum Hodge Field Theory. Its tree level gives a Feynman integral approach to Hodge theory. Derive it as a Hodge-theoretic analog of Chern-Simons theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及数论和代数几何边界的研究,并延伸到数学的其他几个分支。特别是它涉及工作的多项式方程及其解决方案。与一组多项式方程的解相关联的是一个数学对象,它们的zeta函数。本研究将深入研究亚历山大贝林森,唐扎吉尔和其他人在30-40年前所做的关于这些zeta函数的理论。这些研究也对理论物理学产生了影响。 该项目的另一个方面是,它将支持培养这一研究领域的研究生。任何具有整系数的多项式方程组都会产生一个复变函数,即Zeta函数Z(s)。它以一种非常神秘的方式编码了解空间最重要的特征。 特别地,zeta函数Z(s)在s的积分值处的特殊值应表示为周期,即某些特定类型的积分。PI将研究zeta函数的特殊值,将它们与非常经典的数学对象联系起来,可以追溯到欧拉-经典的多对数函数,它推广了对数函数。PI使用的技术来自数学和数学物理的几个部分,例如动机理论,一方面是代数K理论,另一方面是簇及其量化。在多倍体和簇状变种之间存在着深刻的联系是令人惊讶的。它将有许多应用远远超出代数几何和数论,例如在调查散射振幅在理论物理。主要研究员将继续研究各种模空间的量子几何及其在代数几何、数学物理和数论中的应用,包括研究经典和量子多面体、L函数的特殊值、motivic Galois群、量子霍奇场论、团簇结构和量子化。 局部系统的模空间该项目的主要优先事项如下:a)利用簇与复形之间的关系证明Zagier关于Dedekind zeta函数的特殊值的猜想,至少对于s=5,并将motivic上同调与复形的上同调联系起来。 B)发展量子多重多项式理论,给出了穿孔射影线的原动机基本群的幂等完备化周期的量子变形。c)全面地讨论了曲面上G-局部系统的模空间中各种模的簇结构。将其应用于这些模空间的量子化,量子群的表示论,镜像对称和数学物理。(4)发展量子霍奇场论。它的树水平给出了费曼积分方法霍奇理论。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Inverse Spectral Map for Dimers
二聚体的逆谱图
- DOI:10.1007/s11040-023-09466-5
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:George, T.;Goncharov, A. B.;Kenyon, R.
- 通讯作者:Kenyon, R.
Cluster construction of the second motivic Chern class
第二届陈省身班集群建设
- DOI:10.1007/s00029-023-00854-x
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Goncharov, Alexander B.;Kislinskyi, Oleksii
- 通讯作者:Kislinskyi, Oleksii
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Goncharov其他文献
On Smoothness of the Green Function for the Complement of a Rarefied Cantor-Type Set
- DOI:
10.1007/s00365-010-9092-9 - 发表时间:
2010-04-08 - 期刊:
- 影响因子:1.200
- 作者:
Muhammed Altun;Alexander Goncharov - 通讯作者:
Alexander Goncharov
A tribute to Sasha Beilinson
- DOI:
10.1007/s00029-018-0399-x - 发表时间:
2018-02-16 - 期刊:
- 影响因子:1.200
- 作者:
Michael Finkelberg;Dennis Gaitsgory;Alexander Goncharov;Alexander Polishchuk - 通讯作者:
Alexander Polishchuk
Orthogonal Polynomials on Generalized Julia Sets
- DOI:
10.1007/s11785-017-0669-1 - 发表时间:
2017-04-05 - 期刊:
- 影响因子:0.800
- 作者:
Gökalp Alpan;Alexander Goncharov - 通讯作者:
Alexander Goncharov
Donaldson–Thomas transformations of moduli spaces of G-local systems
- DOI:
10.1016/j.aim.2017.06.017 - 发表时间:
2018-03-17 - 期刊:
- 影响因子:
- 作者:
Alexander Goncharov;Linhui Shen - 通讯作者:
Linhui Shen
The Galois group of the category of mixed Hodge–Tate structures
- DOI:
10.1007/s00029-018-0393-3 - 发表时间:
2018-02-09 - 期刊:
- 影响因子:1.200
- 作者:
Alexander Goncharov;Guangyu Zhu - 通讯作者:
Guangyu Zhu
Alexander Goncharov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Goncharov', 18)}}的其他基金
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
- 批准号:
2320309 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
- 批准号:
2153059 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Thermal conductivity of lower mantle minerals and outer core alloys studied by combined fast pulsed laser and optical spectroscopy techniques
结合快速脉冲激光和光谱技术研究下地幔矿物和外核合金的热导率
- 批准号:
2049127 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Thermal conductivity of Deep Earth's materials studied by combined fast pulsed laser and optical spectroscopy techniques
通过快速脉冲激光和光谱技术相结合研究地球深部材料的热导率
- 批准号:
1763287 - 财政年份:2018
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Moduli Spaces, Motives, Periods, and Scattering Amplitudes
模空间、动机、周期和散射幅度
- 批准号:
1564385 - 财政年份:2016
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
MRI: Acquisition of integrated optical spectroscopy system at the Advanced Photon Source
MRI:在先进光子源处获取集成光谱系统
- 批准号:
1531583 - 财政年份:2015
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Thermal conductivity of Deep Earth's materials studied by fast pulsed laser techniques
通过快速脉冲激光技术研究地球深部材料的热导率
- 批准号:
1520648 - 财政年份:2015
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Development of an Ultrafast Laser Instrument for Probing Earth and Planetary Materials under Extreme Pressures and Temperatures
开发用于在极端压力和温度下探测地球和行星材料的超快激光仪器
- 批准号:
1128867 - 财政年份:2013
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
MODULI SPACES, MOTIVES, PERIODS and SCATTERING AMPLITUDES
模空间、动机、周期和散射幅度
- 批准号:
1301776 - 财政年份:2013
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
相似海外基金
Economic Motives and functions of migration: perspectives of India-Japan relationship
经济动机和移民的功能:印日关系的视角
- 批准号:
19K23240 - 财政年份:2019
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Arithmetic Geometry, Modularity, and L-Functions of Motives
算术几何、模块化和动机的 L 函数
- 批准号:
1902372 - 财政年份:2018
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Study of L-functions and regulators of motives via special functions
通过特殊函数研究 L 函数和动机调节器
- 批准号:
18K03234 - 财政年份:2018
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic Geometry, Modularity, and L-Functions of Motives
算术几何、模块化和动机的 L 函数
- 批准号:
1702019 - 财政年份:2017
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
L-functions and motivic cohomology of motives over cyclotomic fields
分圆域上动机的 L 函数和动机上同调
- 批准号:
445416-2013 - 财政年份:2013
- 资助金额:
$ 31.5万 - 项目类别:
JSPS Researcher Exchange Program
Polylogarithms, moduli spaces, Hodge theory, motives and L-functions
多对数、模空间、Hodge 理论、动机和 L 函数
- 批准号:
1059129 - 财政年份:2010
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Polylogarithms, moduli spaces, Hodge theory, motives and L-functions
多对数、模空间、Hodge 理论、动机和 L 函数
- 批准号:
0968234 - 财政年份:2010
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
1-Motives, Equivariant Iwasawa Theory and Special Values of L-functions
1-动机、等变岩泽理论和 L 函数的特殊值
- 批准号:
0901447 - 财政年份:2009
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Polylogarithms, Moduli Spaces, Mixed Motives and L-Functions
多对数、模空间、混合动机和 L 函数
- 批准号:
0653721 - 财政年份:2007
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Polylogarithms, Moduli Spaces, Mixed Motives, and L-Functions
多对数、模空间、混合动机和 L 函数
- 批准号:
0400449 - 财政年份:2004
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant