Collaborative Research: Mining Seismic Wavefields

合作研究:挖掘地震波场

基本信息

  • 批准号:
    1818579
  • 负责人:
  • 金额:
    $ 12.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

This award will fund continued development of methods to process huge volumes of seismic waveform data. This will lead to a great increase in the number of located and characterized seismic events of various kinds and will potentially identify patterns in earthquake occurrence that could inform hazard and near-term rupture forecasting. The initial "Mining Seismic Wavefields" NSF Geoinformatics grant has led to significant progress dealing with data volumes that would have been impossible to process when the project began. This award will fund an additional year of that effort and will maintain this momentum in technique development to complete the analysis of proof-of-concept projects on vast waveform data sets, and to deploy the cyberinfrastructure for wider use by the seismological community.The premise of the research is that continuous and/or densely recorded data coupled with high performance computing and scalable algorithms can enable a network-based approach to earthquake detection that greatly improves the detection of weak and unusual events that would be difficult or impossible to detect using traditional approaches. Numerous seismological observations confirm that proximal earthquake sources generate similar signals. Exploiting the discriminative power of this similarity has led to many fundamental discoveries; however, most similarity-based detection methods require prior knowledge of the source waveform, or template. Blind/uninformed search for signals having unknown signatures based on pair-wise or multiple matches has seen some success, but naïve implementations of this approach suffer from quadratic scaling of computation with time such that problems of interest are inaccessible even for the most capable computers. Similarly, for dense networks, the availability of continuous waveform data motivates alternative detection schemes based on waveform similarity at adjacent stations. This project will further develop efficient data-mining techniques to enable scalable similarity search of seismic wavefields. Technical challenges to be addressed as part of the research for spatially sparse recording are to develop improved similarity-preserving compression for repeating signals detected over a network, and to improve post-processing of search output that will both isolate signals of seismological interest and minimize false detections. For spatially dense recording, this would extend recently developed wavefield matching techniques to similarity across adjacent stations, which would enable similarity search across unaliased elastic wavefields in four dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将资助继续开发处理大量地震波形数据的方法。这将导致各种类型的地震事件的定位和特征数量大幅增加,并有可能确定地震发生的模式,从而为灾害和近期破裂预测提供信息。最初的“挖掘地震波场”NSF 地理信息学资助在处理数据量方面取得了重大进展,而在项目开始时,这些数据量是不可能处理的。该奖项将为这一努力提供额外一年的资助,并将保持技术开发的势头,以完成对大量波形数据集的概念验证项目的分析,并部署网络基础设施以供地震学界更广泛使用。该研究的前提是,连续和/或密集记录的数据与高性能计算和可扩展算法相结合,可以实现基于网络的地震检测方法,从而大大提高地震检测的准确性。 检测使用传统方法很难或不可能检测到的微弱和异常事件。大量地震学观测证实,邻近的地震源会产生类似的信号。利用这种相似性的区分能力已经带来了许多基本发现。然而,大多数基于相似性的检测方法需要先了解源波形或模板。基于成对或多重匹配对具有未知签名的信号进行盲目/不知情的搜索已经取得了一些成功,但这种方法的简单实现会受到计算随时间的二次缩放的影响,使得即使对于最强大的计算机来说,感兴趣的问题也无法解决。同样,对于密集网络,连续波形数据的可用性激发了基于相邻站波形相似性的替代检测方案。该项目将进一步开发高效的数据挖掘技术,以实现地震波场的可扩展相似性搜索。作为空间稀疏记录研究的一部分,需要解决的技术挑战是为通过网络检测到的重复信号开发改进的保留相似性的压缩,并改进搜索输出的后处理,以隔离地震学感兴趣的信号并最大限度地减少错误检测。对于空间密集记录,这将把最近开发的波场匹配技术扩展到相邻站之间的相似性,这将能够在四个维度上对非混叠弹性波场进行相似性搜索。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Earthquake Fingerprints: Extracting Waveform Features for Similarity-Based Earthquake Detection
  • DOI:
    10.1007/s00024-018-1995-6
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    2
  • 作者:
    K. Bergen;G. Beroza
  • 通讯作者:
    K. Bergen;G. Beroza
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Beroza其他文献

Gregory Beroza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Beroza', 18)}}的其他基金

Seafloor Fiber Optic Array in Monterey Bay (SEAFOAM)
蒙特利湾海底光纤阵列 (SEAFOAM)
  • 批准号:
    2023301
  • 财政年份:
    2020
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
The Second Cargese School on Earthquakes - Participant Support
第二届 Cargese 地震学校 - 参与者支持
  • 批准号:
    1743284
  • 财政年份:
    2017
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Mining Seismic Wavefields
合作研究:挖掘地震波场
  • 批准号:
    1551462
  • 财政年份:
    2016
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Ground Motion Prediction Using Virtual Earthquakes
使用虚拟地震进行地面运动预测
  • 批准号:
    1520867
  • 财政年份:
    2015
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
The Bucaramanga Nest: A Natural Laboratory for Exploring the Mechanics of Intermediate Depth Earthquakes
布卡拉曼加巢:探索中深度地震力学的天然实验室
  • 批准号:
    1045684
  • 财政年份:
    2011
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Long-Period Strong Ground Motion Prediction Using the Ambient Seismic Field
利用环境地震场进行长周期强地震动预测
  • 批准号:
    0943885
  • 财政年份:
    2010
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Towards a Comprehensive Understanding of Episodic Tremor and Slip
全面了解阵发性震颤和滑倒
  • 批准号:
    0710835
  • 财政年份:
    2007
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
The Mechanics of Subduction in Japan from High-Precision Earthquake Location and Tomography
从高精度地震定位和断层扫描研究日本俯冲机制
  • 批准号:
    0409917
  • 财政年份:
    2004
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
Radiated Seismic Energy from Very Small and Very Large Earthquakes
非常小和非常大的地震辐射的地震能量
  • 批准号:
    0208499
  • 财政年份:
    2002
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
Dynamic-Stochastic Modeling of Earthquake Rupture and Strong Ground Motion
地震破裂和强地震动的动态随机建模
  • 批准号:
    0106823
  • 财政年份:
    2001
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317192
  • 财政年份:
    2023
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317194
  • 财政年份:
    2023
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319450
  • 财政年份:
    2023
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantifying the Global Electric Circuit by Data Mining of Electric Field and Radar Observations from Ground Based, Airborne and Satellite Platforms
合作研究:通过地面、机载和卫星平台的电场和雷达观测数据挖掘来量化全球电​​路
  • 批准号:
    2328464
  • 财政年份:
    2023
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319451
  • 财政年份:
    2023
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319449
  • 财政年份:
    2023
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317193
  • 财政年份:
    2023
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
  • 批准号:
    2201799
  • 财政年份:
    2022
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
  • 批准号:
    2201796
  • 财政年份:
    2022
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了