Partial Differential Equation Constrained Optimization: Algorithms, Numerics, and Applications

偏微分方程约束优化:算法、数值和应用

基本信息

  • 批准号:
    1818772
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The state of the art in modeling of the physical processes in science and engineering confronts us with solving increasingly complex optimization problems in the presence of constraints. Think of designing the wing of an aircraft where it is essential that it can withstand a tremendous amount of pressure. This is just one of the example of an optimization problem with constrains. Such problems are inherently nonlinear due to constraints. This makes the development and analysis of algorithms and numerical techniques for the solution of these problems extremely challenging but rewarding. This project will create new optimization algorithms that allows us to incorporate constraints in a systematic and robust fashion. The targeted applications range from next generation micro- and nano-scale lab-on-chip devices to novel material and structural designs. Open source software will be created so that the research can be easily used by scientists working in other research areas. The applications under consideration can be modeled using partial differential equations (PDEs). These PDEs are nonlocal (fractional); nonsmooth (contact problems); geometric, nonlinear, multiscale with an unknown domain, i.e. free boundary problems (FBPs). This project focuses on optimization problems with such PDE constraints - the so-called PDE constrained optimization problems. It aims to create new optimization schemes that will enable the solution of currently intractable optimization problems with nonsmooth features, including: optimization problems with nonlinear inequality constraints, contact problems, and risk-averse PDE constrained optimization. The resulting optimization algorithms will provide new insights into nonconvex nonsmooth problems. Optimization problems with surface tension is a new research field with great potential to enhance our understanding at the micro and nano-scales where surface effects dominate bulk effects. This will impact the design of next generation lab-on-chip, forensics and liquid lenses in astronomical telescopes. Open source software will be developed, which will not only benefit scientists in optimization, FBPs, and nonlocal problems but also scientists in nonlinear PDEs and data driven optimization problems. The results will be disseminated via two special topics courses on (i) PDE constrained optimization under uncertainty; (ii) Deep learning and PDE constrained optimization. One female student will get her PhD.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学和工程中物理过程建模的最新技术水平使我们面临着在存在约束的情况下解决日益复杂的优化问题。想想飞机机翼的设计,它必须能够承受巨大的压力。这只是带有约束的优化问题的一个例子。由于受到约束,这类问题本质上是非线性的。这使得开发和分析用于解决这些问题的算法和数值技术具有极大的挑战性,但也是有益的。该项目将创建新的优化算法,使我们能够以系统和稳健的方式纳入约束。目标应用范围从下一代微米和纳米级芯片实验室设备到新的材料和结构设计。将创建开放源码软件,以便在其他研究领域工作的科学家可以轻松使用这些研究。所考虑的应用可以用偏微分方程组(PDE)来建模。这些偏微分方程组是非局部的(分数阶的)、非光滑的(接触问题)、几何的、非线性的、具有未知域的多尺度的,即自由边界问题。本项目主要研究具有这种偏微分方程约束的优化问题,即所谓的偏微分方程组约束优化问题。它的目标是创建新的优化方案,使之能够解决目前难以解决的具有非光滑特征的优化问题,包括:具有非线性不等式约束的优化问题、接触问题和风险厌恶的偏微分方程约束优化问题。由此产生的优化算法将为研究非凸非光滑问题提供新的见解。表面张力优化问题是一个新的研究领域,在微纳尺度上有很大的潜力来加深我们对表面效应占主导地位的体效应的理解。这将影响下一代芯片实验室、法医学和天文望远镜中的液体透镜的设计。将开发开源软件,这不仅有利于优化、FBP和非局部问题的科学家,也将有利于研究非线性偏微分方程组和数据驱动优化问题的科学家。结果将通过两个专题课程传播:(I)不确定条件下的偏微分方程约束最优化;(Ii)深度学习和偏微分方程约束最优化。一名女学生将获得博士学位。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fractional Operators Applied to Geophysical Electromagnetics
分数算子在地球物理电磁学中的应用
  • DOI:
    10.1093/gji/ggz516
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Weiss, C J;van Bloemen Waanders, B G;Antil, H
  • 通讯作者:
    Antil, H
Bilevel optimization, deep learning and fractional Laplacian regularization with applications in tomography
  • DOI:
    10.1088/1361-6420/ab80d7
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Antil, Harbir;Di, Zichao Wendy;Khatri, Ratna
  • 通讯作者:
    Khatri, Ratna
A Note on Multigrid Preconditioning for Fractional PDE-Constrained Optimization Problems
  • DOI:
    10.1016/j.rinam.2020.100133
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harbir Antil;Andrei Draganescu;K. Green
  • 通讯作者:
    Harbir Antil;Andrei Draganescu;K. Green
Model reduction for fractional elliptic problems using Kato's formula
  • DOI:
    10.3934/mcrf.2021004
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    H. Dinh;Harbir Antil;Yanlai Chen;E. Cherkaev;A. Narayan
  • 通讯作者:
    H. Dinh;Harbir Antil;Yanlai Chen;E. Cherkaev;A. Narayan
High fidelity modeling of aerosol pathogen propagation in built environments with moving pedestrians
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harbir Antil其他文献

Optimal control of the coefficient for the regional fractional \begin{document} $p$\end{document}-Laplace equation: Approximation and convergence
区域分数 egin{document} $p$end{document}-拉普拉斯方程系数的最优控制:逼近和收敛
A Note on Dimensionality Reduction in Deep Neural Networks using Empirical Interpolation Method
关于使用经验插值方法进行深度神经网络降维的注意事项
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harbir Antil;Madhu Gupta;Randy Price
  • 通讯作者:
    Randy Price
Integer Optimal Control with Fractional Perimeter Regularization
分数周长正则化的整数最优控制
  • DOI:
    10.21105/joss.06451
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harbir Antil;Paul Manns
  • 通讯作者:
    Paul Manns
Exterior Nonlocal Variational Inequalities
外部非局部变分不等式
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harbir Antil;Madeline O. Horton;M. Warma
  • 通讯作者:
    M. Warma
Controllability properties from the exterior under positivity constraints for a 1-D fractional heat equation
一维分数热方程正约束下的外部可控性

Harbir Antil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harbir Antil', 18)}}的其他基金

Conference: Mathematical Opportunities in Digital Twins (MATH-DT)
会议:数字孪生中的数学机会 (MATH-DT)
  • 批准号:
    2330895
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Nonlocal School on Fractional Equations
分数阶方程非局部学派
  • 批准号:
    2213723
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints
偏微分方程约束优化的算法和数值方法
  • 批准号:
    2110263
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Multilevel Methods for Optimal Control of Partial Differential Equations and Optimization-Based Domain Decomposition
协作研究:偏微分方程最优控制的多级方法和基于优化的域分解
  • 批准号:
    1913004
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
East Coast Optimization Meeting (ECOM) 2019
2019 年东海岸优化会议 (ECOM)
  • 批准号:
    1907412
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Numerical Analysis of Partial Differential Equation Constrained Optimization Problems
偏微分方程约束优化问题的数值分析
  • 批准号:
    1521590
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    ARC Future Fellowships
Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
  • 批准号:
    2309551
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Interplay Between Data and Partial Differential Equation Models Through the Lens of Kinetic Equations
通过动力学方程的视角观察数据和偏微分方程模型之间的相互作用
  • 批准号:
    2308440
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
  • 批准号:
    2145167
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
  • 批准号:
    2042384
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
  • 批准号:
    2106650
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
General-Domain, Scalable, Accelerated Spectral Partial Differential Equation Solvers and Applications in Simulation and Design
通用域、可扩展、加速谱偏微分方程求解器及其在仿真和设计中的应用
  • 批准号:
    2109831
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
  • 批准号:
    2203014
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Global analysis for solution of dispersive partial differential equation with mass subcritical nonlinearity
具有质量次临界非线性的色散偏微分方程解的全局分析
  • 批准号:
    21H00993
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints
偏微分方程约束优化的算法和数值方法
  • 批准号:
    2110263
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了