Nonlocal School on Fractional Equations
分数阶方程非局部学派
基本信息
- 批准号:2213723
- 负责人:
- 金额:$ 2.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the Nonlocal School on Fractional Equations (NSFE) 2022, held on campus of Iowa State University on June 9 – 11, 2022. Fractional (nonlocal) models in science and engineering can account for long range interactions and are notably flexible in being applicable to non-smooth scenarios. Motivated by these facts and several applications, this research area has attracted a significant amount of recent attention on both theoretical and computational fronts. Examples include novel fractional-derivative-based models in imaging, geophysics, plasmas, deep neural networks, minimal surfaces, and phase transitions. These emerging applications have created a need for development of a modern theory, new numerical methods, and subsequent control of the nonlocal fractional models. The NSFE 2022 meeting aims to address most of these topics. A primary goal of the school is to introduce students and early-career researchers to current trends in nonlocal equations, as well as to provide a vibrant networking environment. There will be two (three hour long) mini-tutorial style lectures and six invited talks from leading researchers in the field. This meeting will advance knowledge in nonlocal modeling, optimal control, numerical analysis, implementation, and software development. These topics involve numerous aspects of probability theory, optimization and variational analysis, convex analysis, and applied and computational mathematics. The school aims to stimulate new developments in these important areas of mathematics and their application to finance, physics, biology, data science, and engineering. The meeting also aims to provide a unique opportunity for graduate students, postdocs, and other early career scientists to interact with leading researchers in fractional nonlocal models. The organizers are making a special effort to recruit participants from minority groups in STEM and from minority serving institutions. Videos of the lectures as well as lecture notes will be uploaded on the conference website: https://pabloraulstinga.github.io/NSFE2022.htmlThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持参加2022年6月9日至11日在爱荷华州立大学校园举行的非本地分数方程学校(NSFE)。科学和工程中的分数(非局部)模型可以解释远距离相互作用,并且在适用于非光滑场景方面具有显著的灵活性。受这些事实和几个应用的启发,这个研究领域最近在理论和计算方面都吸引了大量的关注。例子包括成像、地球物理、等离子体、深度神经网络、最小表面和相变等领域的新型分数导数模型。这些新兴的应用产生了发展现代理论、新的数值方法和随后的非局部分数模型控制的需要。NSFE 2022会议旨在解决这些主题中的大多数。学校的主要目标是向学生和早期职业研究人员介绍非局部方程的当前趋势,以及提供一个充满活力的网络环境。将有2个(3小时)小型辅导式讲座和6个来自该领域主要研究人员的邀请演讲。本次会议将推进非局部建模、最优控制、数值分析、实现和软件开发方面的知识。这些主题涉及概率论、优化和变分分析、凸分析以及应用和计算数学的许多方面。该学院旨在刺激这些重要数学领域的新发展,以及它们在金融、物理、生物、数据科学和工程领域的应用。会议还旨在为研究生、博士后和其他早期职业科学家提供一个独特的机会,与分数非局部模型的主要研究人员进行互动。组织者正在做出特别努力,从STEM的少数群体和少数群体服务机构招募参与者。讲座视频和讲稿将上传到会议网站:https://pabloraulstinga.github.io/NSFE2022.htmlThis该奖项反映了美国国家科学基金会的法定使命,并通过基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harbir Antil其他文献
Optimal control of the coefficient for the regional fractional \begin{document} $p$\end{document}-Laplace equation: Approximation and convergence
区域分数 egin{document} $p$end{document}-拉普拉斯方程系数的最优控制:逼近和收敛
- DOI:
10.3934/mcrf.2019001 - 发表时间:
2019 - 期刊:
- 影响因子:1.2
- 作者:
Harbir Antil;M. Warma - 通讯作者:
M. Warma
A Note on Dimensionality Reduction in Deep Neural Networks using Empirical Interpolation Method
关于使用经验插值方法进行深度神经网络降维的注意事项
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Harbir Antil;Madhu Gupta;Randy Price - 通讯作者:
Randy Price
Integer Optimal Control with Fractional Perimeter Regularization
分数周长正则化的整数最优控制
- DOI:
10.21105/joss.06451 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Harbir Antil;Paul Manns - 通讯作者:
Paul Manns
Controllability properties from the exterior under positivity constraints for a 1-D fractional heat equation
一维分数热方程正约束下的外部可控性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.5
- 作者:
Harbir Antil;U. Biccari;Rodrigo Ponce;M. Warma;S. Zamorano - 通讯作者:
S. Zamorano
Exterior Nonlocal Variational Inequalities
外部非局部变分不等式
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Harbir Antil;Madeline O. Horton;M. Warma - 通讯作者:
M. Warma
Harbir Antil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harbir Antil', 18)}}的其他基金
Conference: Mathematical Opportunities in Digital Twins (MATH-DT)
会议:数字孪生中的数学机会 (MATH-DT)
- 批准号:
2330895 - 财政年份:2023
- 资助金额:
$ 2.41万 - 项目类别:
Standard Grant
Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints
偏微分方程约束优化的算法和数值方法
- 批准号:
2110263 - 财政年份:2021
- 资助金额:
$ 2.41万 - 项目类别:
Standard Grant
Collaborative Research: Multilevel Methods for Optimal Control of Partial Differential Equations and Optimization-Based Domain Decomposition
协作研究:偏微分方程最优控制的多级方法和基于优化的域分解
- 批准号:
1913004 - 财政年份:2019
- 资助金额:
$ 2.41万 - 项目类别:
Standard Grant
East Coast Optimization Meeting (ECOM) 2019
2019 年东海岸优化会议 (ECOM)
- 批准号:
1907412 - 财政年份:2019
- 资助金额:
$ 2.41万 - 项目类别:
Standard Grant
Partial Differential Equation Constrained Optimization: Algorithms, Numerics, and Applications
偏微分方程约束优化:算法、数值和应用
- 批准号:
1818772 - 财政年份:2018
- 资助金额:
$ 2.41万 - 项目类别:
Standard Grant
Numerical Analysis of Partial Differential Equation Constrained Optimization Problems
偏微分方程约束优化问题的数值分析
- 批准号:
1521590 - 财政年份:2015
- 资助金额:
$ 2.41万 - 项目类别:
Standard Grant
相似国自然基金
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Analysis of solution dynamics for time-fractional reaction-diffusion equations and systems
时间分数反应扩散方程和系统的解动力学分析
- 批准号:
22K13954 - 财政年份:2022
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fractional Calculus of Distributions and Integral Equations
分布和积分方程的分数阶微积分
- 批准号:
RGPIN-2019-03907 - 财政年份:2022
- 资助金额:
$ 2.41万 - 项目类别:
Discovery Grants Program - Individual
Spectral element methods for fractional differential equations, with applications in applied analysis and medical imaging
分数阶微分方程的谱元方法,在应用分析和医学成像中的应用
- 批准号:
EP/T022280/1 - 财政年份:2021
- 资助金额:
$ 2.41万 - 项目类别:
Research Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 2.41万 - 项目类别:
Continuing Grant
Evolution equations with the coexistence of fractional derivatives and nonlinear structures -perturbation theory and asymptotic analysis-
分数阶导数与非线性结构并存的演化方程-微扰理论与渐近分析-
- 批准号:
21K18581 - 财政年份:2021
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Spectral element methods for fractional differential equations, with applications in applied analysis and medical imaging
分数阶微分方程的谱元方法,在应用分析和医学成像中的应用
- 批准号:
EP/T022132/1 - 财政年份:2021
- 资助金额:
$ 2.41万 - 项目类别:
Research Grant
Fractional Calculus of Distributions and Integral Equations
分布和积分方程的分数阶微积分
- 批准号:
RGPIN-2019-03907 - 财政年份:2021
- 资助金额:
$ 2.41万 - 项目类别:
Discovery Grants Program - Individual
Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application
变阶分数阶偏微分方程:计算、分析与应用
- 批准号:
2012291 - 财政年份:2020
- 资助金额:
$ 2.41万 - 项目类别:
Standard Grant
Fractional Calculus of Distributions and Integral Equations
分布和积分方程的分数阶微积分
- 批准号:
RGPIN-2019-03907 - 财政年份:2020
- 资助金额:
$ 2.41万 - 项目类别:
Discovery Grants Program - Individual
Fractional Differential Equations
分数阶微分方程
- 批准号:
549931-2020 - 财政年份:2020
- 资助金额:
$ 2.41万 - 项目类别:
University Undergraduate Student Research Awards