Machine Learning in Macroeconomic Modeling
宏观经济建模中的机器学习
基本信息
- 批准号:1824253
- 负责人:
- 金额:$ 31.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2019-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award funds research that will examine whether incorporating machine learning algorithms into macroeconomic models can result in better ways to understand modern economies. The project will begin by assuming that individual consumers, workers, and firms can be modeled as making their decisions according to a particular type of machine learning algorithm (a boosting algorithm). The project seeks to understand the conditions under which a machine learning algorithm can emulate the decision-making process of a rational individual. The team will also analyze likely long run economic outcomes when these algorithms are used under various institutional and informational assumptions. The project, therefore, may develop a valuable new technique for modeling individual decisions in the context of an entire economic system. It could also help us understand how future economic outcomes may be affected by the increased use of machine learning methods to aid or even substitute for human decision making. The project could therefore help guide efforts to improve the competitiveness of the US economy.The research team will exploit one of the central components of the machine learning algorithm, called the boosting algorithm, to build a highly accurate forecasting rule from a collection of rudimentary and possibly inaccurate forecasting rules. The usual approach in economic models is to assume that the agents (individuals, firms, etc.) are typically endowed with misspecified models. When this is the case, an individual or firm's decision-making process typically relies on simple, yet well fit, forecasting rules, which can differ from the true data generating process. The team aim to understand whether an agent endowed with flawed but well fit models can behave as if she knows the true data generating process. The team plans to pursue this objective in two steps. In the first part of the project, the team will examine learning dynamics under misspecified models. As an example, it examines a new class of learning models in which the agent has to learn the growth rate instead of the level of a variable of interest. In many macroeconomic models, the growth rate (e.g., inflation rate) rather than the level of a variable (e.g., price) is the main focus of the investigation. Assuming that the agent learns the growth rate through a recursive learning process rather than rational expectations may result in better explanations of important macroeconomic dynamics, such as recurrent hyperinflation and stock price volatility. The second step in the research plan investigates the dynamics of a specific machine learning algorithm with two research objectives: [1] if an agent is endowed with misspecified models, how the decision maker can test and build a new model to improve the forecast, and [2] what are the asymptotic properties of the processes of constructing new models, in particular whether the agent can emulate the rational agent in the long run.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项资助的研究将研究将机器学习算法纳入宏观经济模型是否可以更好地理解现代经济。 该项目将开始假设个人消费者,工人和公司可以根据特定类型的机器学习算法(提升算法)进行决策。该项目旨在了解机器学习算法可以模拟理性个体决策过程的条件。该团队还将分析在各种制度和信息假设下使用这些算法时可能的长期经济结果。因此,该项目可能会开发一种有价值的新技术,用于在整个经济系统的背景下对个人决策进行建模。它还可以帮助我们了解未来的经济结果可能会受到越来越多地使用机器学习方法来帮助甚至取代人类决策的影响。因此,该项目可能有助于指导提高美国经济竞争力的努力。研究团队将利用机器学习算法的核心组件之一,即所谓的提升算法,从一组基本的、可能不准确的预测规则中构建一个高度准确的预测规则。经济模型中的通常方法是假设代理人(个人,公司等)通常被赋予错误的模型。在这种情况下,个人或公司的决策过程通常依赖于简单但非常适合的预测规则,这些规则可能与真正的数据生成过程不同。该团队的目标是了解一个被赋予有缺陷但拟合良好的模型的代理是否可以表现得好像她知道真正的数据生成过程。 该小组计划分两步实现这一目标。在项目的第一部分,团队将研究在错误指定的模型下的学习动态。 作为一个例子,它研究了一类新的学习模型,其中代理必须学习增长率,而不是感兴趣的变量的水平。在许多宏观经济模型中,增长率(例如,通货膨胀率)而不是变量的水平(例如,价格)是调查的主要焦点。 假设代理人通过递归学习过程而不是理性预期来学习增长率,可能会更好地解释重要的宏观经济动态,例如经常性的恶性通货膨胀和股票价格波动。研究计划的第二步是研究特定机器学习算法的动态,有两个研究目标:[1]如果代理被赋予错误指定的模型,决策者如何测试和构建新模型以改进预测,[2]构建新模型的过程的渐近性质是什么,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
In-Koo Cho其他文献
アジア地域秩序とASEANの挑戦--「東アジア共同体」を目指して
亚洲地区秩序与东盟的挑战--以“东亚共同体”为目标
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
In-Koo Cho;Akihiko Matsui;黒柳米司(編) - 通讯作者:
黒柳米司(編)
When You Ask Zeus a Favor : The Third Party's Voice in a Dictator Game
当你向宙斯求助时:独裁者游戏中第三方的声音
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
In-Koo Cho;Akihiko Matsui;黒柳米司(編);Akihiko Matsui;Akihiko Matsui;Akihiko Matsui;Tetsuo Yamamori(共著) - 通讯作者:
Tetsuo Yamamori(共著)
Assessing welfare impact of entry into power market
- DOI:
10.1016/j.enpol.2013.05.124 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:
- 作者:
In-Koo Cho;Hyunsook Kim - 通讯作者:
Hyunsook Kim
Foundation of competitive equilibrium with non-transferable utility
具有不可转让效用的竞争均衡的基础
- DOI:
10.1016/j.jet.2017.05.008 - 发表时间:
2017 - 期刊:
- 影响因子:1.6
- 作者:
In-Koo Cho;Akihiko Matsui - 通讯作者:
Akihiko Matsui
Agenda Power in the Japanese Diet.
日本议会的议程权力。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
In-Koo Cho;Akihiko Matsui;Mikitaka Masuyama. - 通讯作者:
Mikitaka Masuyama.
In-Koo Cho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('In-Koo Cho', 18)}}的其他基金
Machine Learning in Macroeconomic Modeling
宏观经济建模中的机器学习
- 批准号:
1952882 - 财政年份:2019
- 资助金额:
$ 31.1万 - 项目类别:
Standard Grant
Learning with Model Uncertainty and Misspecification
学习模型的不确定性和错误指定
- 批准号:
1952874 - 财政年份:2019
- 资助金额:
$ 31.1万 - 项目类别:
Standard Grant
Learning with Model Uncertainty and Misspecification
学习模型的不确定性和错误指定
- 批准号:
1530589 - 财政年份:2015
- 资助金额:
$ 31.1万 - 项目类别:
Standard Grant
Social Foundation of Nash Bargaining Solution
纳什讨价还价解决方案的社会基础
- 批准号:
1061855 - 财政年份:2011
- 资助金额:
$ 31.1万 - 项目类别:
Standard Grant
Studies on Dynamic Markets: Small Change and Big Impact
动态市场研究:小变化大影响
- 批准号:
0720592 - 财政年份:2007
- 资助金额:
$ 31.1万 - 项目类别:
Standard Grant
Learning With Misspecified Models
使用错误指定的模型进行学习
- 批准号:
0004315 - 财政年份:2001
- 资助金额:
$ 31.1万 - 项目类别:
Continuing Grant
Learning to Cooperate in Repeated Games
学习在重复博弈中合作
- 批准号:
9996058 - 财政年份:1998
- 资助金额:
$ 31.1万 - 项目类别:
Continuing Grant
Learning to Cooperate in Repeated Games
学习在重复博弈中合作
- 批准号:
9602082 - 财政年份:1996
- 资助金额:
$ 31.1万 - 项目类别:
Continuing Grant
Perceptrons Play Repeated Games: New Approach to Bounded Rationality
感知器玩重复游戏:有限理性的新方法
- 批准号:
9596161 - 财政年份:1995
- 资助金额:
$ 31.1万 - 项目类别:
Standard Grant
Perceptrons Play Repeated Games: New Approach to Bounded Rationality
感知器玩重复游戏:有限理性的新方法
- 批准号:
9223483 - 财政年份:1993
- 资助金额:
$ 31.1万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 31.1万 - 项目类别:
Collaborative R&D
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 31.1万 - 项目类别:
EU-Funded
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 31.1万 - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 31.1万 - 项目类别:
Linkage Projects
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
- 批准号:
DP240103278 - 财政年份:2024
- 资助金额:
$ 31.1万 - 项目类别:
Discovery Projects
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 31.1万 - 项目类别:
Discovery Early Career Researcher Award
Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
- 批准号:
DE240101089 - 财政年份:2024
- 资助金额:
$ 31.1万 - 项目类别:
Discovery Early Career Researcher Award
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
- 批准号:
2905946 - 财政年份:2024
- 资助金额:
$ 31.1万 - 项目类别:
Studentship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 31.1万 - 项目类别:
Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 31.1万 - 项目类别:
Research Grant