Conference on Microlocal Analysis and Applications

微局部分析与应用会议

基本信息

  • 批准号:
    1830112
  • 负责人:
  • 金额:
    $ 1.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

This project will fund early-career US participants to attend a conference on "Microlocal Analysis and Applications" to be held at Fudan University in Shanghai in June 2019. This conference, the first ever in the field to take place in China, will focus on the theory and uses of microlocal analysis, a field of mathematics which studies how solutions to many equations arising in physics and geometry may be analyzed in phase space, where one keeps track of momentum as well as position. The project will enhance training in this important field of mathematics and will facilitate international collaborations.The project will fund junior US researchers, primarily postdocs and advanced graduate students, but possibly also tenure-track researchers from non-R1 institutions, to attend a meeting on the theory and applications of microlocal analysis at Fudan University in Shanghai in June 2019. Microlocal analysis, which is analysis of partial differential equations by phase space methods, has roots in the development of pseudodifferential and Fourier integral operators in the 1960s, but has of late been experiencing a renaissance in the breadth of its applications across pure and applied mathematics. The meeting will explore advances in fundamental techniques as well as recent applications in areas as diverse as inverse problems, general relativity, classical dynamics, and quantum chaos. The grant will enhance US doctoral and postdoctoral training in microlocal analysis as well as encouraging international collaborations in this and related fields.http://sites.math.northwestern.edu/fudan-microlocal/index.htmlThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将资助美国早期职业参与者参加将于2019年6月在上海复旦大学举行的“微本地分析与应用”会议。 本次会议是该领域首次在中国举行的会议,将重点讨论微局部分析的理论和应用,微局部分析是一个数学领域,研究如何在相空间中分析物理和几何中产生的许多方程的解,在相空间中可以跟踪动量和位置。 该项目将资助美国初级研究人员,主要是博士后和高级研究生,但也可能包括来自非R1机构的终身教职研究人员,参加2019年6月在上海复旦大学举行的关于微观局部分析理论和应用的会议。 微局部分析是用相空间方法分析偏微分方程,起源于20世纪60年代伪微分和傅立叶积分算子的发展,但最近在纯数学和应用数学的应用范围上经历了复兴。 会议将探讨基本技术的进展,以及最近在反问题,广义相对论,经典动力学和量子混沌等领域的应用。 该补助金将加强美国博士和博士后在微观本地分析方面的培训,并鼓励在此和相关的国际合作fields.http://sites.math.northwestern.edu/fudan-microlocal/index.htmlThis奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jared Wunsch其他文献

Spreading of Lagrangian Regularity on Rational Invariant Tori
Corrigendum to "Convergence of curve shortening flow to translating soliton"
“曲线缩短流与平移孤子的收敛性”的勘误表
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Beomjun Choi;K. Choi;P. Daskalopoulos;Oran Gannot;Jared Wunsch;Andrew Corbett;Huabin Ge;Bobo Hua;Ze Zhou;Simion Filip;Valentino Tosatti;F. Plinio;Ioannis Parissis;Paolo Aluffi;Zihua Guo;Kenji Nakanishi;Asher Auel;Alessandro Bigazzi;C. Böhning;H. G. Bothmer;Dimitrios Ntalampekos;Matthew Romney
  • 通讯作者:
    Matthew Romney
Diffraction of Singularities for the Wave Equation on Manifolds with Corners
带角流形上波动方程的奇异性衍射
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard B. Melrose;A. Vasy;Jared Wunsch
  • 通讯作者:
    Jared Wunsch
Caustics of Weakly Lagrangian Distributions
  • DOI:
    10.1007/s00023-021-01110-8
  • 发表时间:
    2021-09-30
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Seán Gomes;Jared Wunsch
  • 通讯作者:
    Jared Wunsch
Helmholtz quasi-resonances are unstable under most single-signed perturbations of the wave speed
亥姆霍兹拟共振在波速的大多数单符号扰动下是不稳定的。
  • DOI:
    10.1016/j.jde.2025.113441
  • 发表时间:
    2025-09-25
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Euan A. Spence;Jared Wunsch;Yuzhou Zou
  • 通讯作者:
    Yuzhou Zou

Jared Wunsch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jared Wunsch', 18)}}的其他基金

Linear Partial Differential Equations on Singular Spaces
奇异空间上的线性偏微分方程
  • 批准号:
    2054424
  • 财政年份:
    2021
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Global Harmonic Analysis
全局谐波分析
  • 批准号:
    1810747
  • 财政年份:
    2018
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Continuing Grant
Linear Partial Differential Equations on Singular Spaces
奇异空间上的线性偏微分方程
  • 批准号:
    1600023
  • 财政年份:
    2016
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Conference: Evolution Equations on Singular Spaces; Luminy, France; April 25-29, 2016
会议:奇异空间的演化方程;
  • 批准号:
    1600014
  • 财政年份:
    2016
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
73rd Midwest PDE Seminar, May 10-11, 2014
第 73 届中西部 PDE 研讨会,2014 年 5 月 10-11 日
  • 批准号:
    1420160
  • 财政年份:
    2014
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Linear Partial Differential Equations on Singular Spaces
奇异空间上的线性偏微分方程
  • 批准号:
    1265568
  • 财政年份:
    2013
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Continuing Grant
Emphasis Year in Algebraic and Smooth Microlocal Analysis
代数和平滑微局部分析的重点年份
  • 批准号:
    1137706
  • 财政年份:
    2011
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Linear Partial Differential Equations on Singular Spaces
奇异空间上的线性偏微分方程
  • 批准号:
    1001463
  • 财政年份:
    2010
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Linear Partial Differential Equations on Singular Spaces
奇异空间上的线性偏微分方程
  • 批准号:
    0700318
  • 财政年份:
    2007
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Linear Partial Differential Equations on Singular Spaces
奇异空间上的线性偏微分方程
  • 批准号:
    0401323
  • 财政年份:
    2004
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant

相似海外基金

Microlocal Analysis and Hyperbolic Dynamics
微局域分析和双曲动力学
  • 批准号:
    2400090
  • 财政年份:
    2024
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Continuing Grant
Microlocal Analysis and Geometry
微局部分析和几何
  • 批准号:
    2247004
  • 财政年份:
    2023
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Microlocal analysis and singularities
微局部分析和奇点
  • 批准号:
    2305363
  • 财政年份:
    2023
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Microlocal Analysis in Integral Geometry
整体几何中的微局部分析
  • 批准号:
    23K03186
  • 财政年份:
    2023
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microlocal Analysis - A Unified Approach for Geometric Models in Biology
微局部分析 - 生物学中几何模型的统一方法
  • 批准号:
    DP220101808
  • 财政年份:
    2023
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Discovery Projects
International Conference on Microlocal Analysis, Harmonic Analysis, and Inverse Problems
微局域分析、调和分析和反问题国际会议
  • 批准号:
    2154480
  • 财政年份:
    2022
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Multilinear Operators and Microlocal Analysis of Electrical Impedance Tomography, Radar, and Seismology
电阻抗层析成像、雷达和地震学的多线性算子和微局域分析
  • 批准号:
    2204943
  • 财政年份:
    2022
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Conference: Geometric Applications of Microlocal Analysis
会议:微局部分析的几何应用
  • 批准号:
    2210936
  • 财政年份:
    2022
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Microlocal Analysis of Random Systems and Fractal Sets
随机系统和分形集的微局部分析
  • 批准号:
    RGPIN-2020-04775
  • 财政年份:
    2022
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Discovery Grants Program - Individual
Microlocal Analysis and Monge-Ampère Type Equations in Geometry
几何中的微局域分析和 Monge-Ampère 型方程
  • 批准号:
    2204347
  • 财政年份:
    2022
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了