Microlocal Analysis and Hyperbolic Dynamics
微局域分析和双曲动力学
基本信息
- 批准号:2400090
- 负责人:
- 金额:$ 42.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project investigates a broad range of topics at the intersection of microlocal analysis and hyperbolic dynamics. Microlocal analysis, with its roots in physical phenomena such as geometric optics and quantum/classical correspondence, is a powerful mathematical theory relating classical Hamiltonian dynamics to singularities of waves and quantum states. Hyperbolic dynamics is the mathematical theory of strongly chaotic systems, where a small perturbation of the initial data leads to exponentially divergent trajectories after a long time. The project takes advantage of the interplay between these two fields, studying the behavior of waves and quantum states in situations where the underlying dynamics is strongly chaotic, and also exploring the applications of microlocal methods to purely dynamical questions. The project provides research training opportunities for graduate students.One direction of this project is in the highly active field of quantum chaos, the study of spectral properties of quantum systems where the underlying classical system has chaotic behavior. The Principal Investigator (PI) has introduced new methods in the field coming from harmonic analysis, fractal geometry, additive combinatorics, and Ratner theory, combined together in the concept of fractal uncertainty principle. The specific goals of the project include: (1) understanding the macroscopic concentration of high energy eigenfunctions of closed chaotic systems, such as negatively curved Riemannian manifolds and quantum cat maps; and (2) proving essential spectral gaps (implying in particular exponential local energy decay of waves) for open systems with fractal hyperbolic trapped sets. A second research direction is the study of forced waves in stratified fluids (with similar problems appearing also for rotating fluids), motivated by experimentally observed internal waves in aquaria and by applications to oceanography. A third direction is to apply microlocal methods originally developed for the theory of hyperbolic partial differential equations to study classical objects such as dynamical zeta functions, which is a rare example of the reversal of quantum/classical correspondence. In particular, the PI and his collaborators study (1) how the special values of the dynamical zeta function for a negatively curved manifold relate to the topology of the manifold; and (2) whether dynamical zeta functions can be meromorphically continued for systems with singularities such as dispersive billiards.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目调查了微观局部分析和双曲动力学交叉的广泛的主题。微域分析起源于几何光学和量子/经典对应等物理现象,是一种将经典哈密顿动力学与波和量子态的奇异性联系起来的强大的数学理论。双曲动力学是强混沌系统的数学理论,初始数据的微小扰动会导致在很长一段时间后轨迹呈指数发散。该项目利用这两个场之间的相互作用,研究了在潜在动力学强烈混沌的情况下波和量子态的行为,并探索了微局部方法在纯动力学问题中的应用。该项目为研究生提供了研究培训机会。该项目的一个方向是在高度活跃的量子混沌领域,研究量子系统的光谱性质,其中潜在的经典系统具有混沌行为。首席调查员(PI)引入了调和分析、分形几何、加性组合学和Ratner理论的新方法,并结合了分形测不准原理的概念。该项目的具体目标包括:(1)了解闭合混沌系统高能本征函数的宏观集中,例如负弯曲的黎曼流形和量子猫映射;(2)证明具有分形双曲陷阱集的开放系统的基本谱间隙(特别是波的指数局部能量衰减)。第二个研究方向是研究分层流体中的强迫波(旋转流体也出现了类似的问题),其动机是在水族箱中通过实验观察到的内波以及在海洋学中的应用。第三个方向是应用最初为双曲型偏微分方程组理论发展起来的微局域方法来研究经典对象,如动态Zeta函数,这是量子/经典对应关系逆转的罕见例子。特别是,PI和他的合作者研究了(1)负曲线流形的动态Zeta函数的特殊值如何与流形的拓扑相关;以及(2)对于具有奇点的系统(如色散台球),动态Zeta函数是否可以亚纯连续。这一奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Semyon Dyatlov其他文献
Asymptotics of Linear Waves and Resonances with Applications to Black Holes
- DOI:
10.1007/s00220-014-2255-y - 发表时间:
2015-01-29 - 期刊:
- 影响因子:2.600
- 作者:
Semyon Dyatlov - 通讯作者:
Semyon Dyatlov
Pollicott-Ruelle resolvent and Sobolev regularity
Pollicott-Ruelle 解析和 Sobolev 正则
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Semyon Dyatlov - 通讯作者:
Semyon Dyatlov
Semyon Dyatlov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Semyon Dyatlov', 18)}}的其他基金
CAREER: Classical and Quantum Chaos
职业:经典和量子混沌
- 批准号:
1749858 - 财政年份:2018
- 资助金额:
$ 42.25万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of the initial value boundary value problem of viscous flows with hyperbolic effects
具有双曲效应的粘性流初值边值问题的数学分析
- 批准号:
22K03374 - 财政年份:2022
- 资助金额:
$ 42.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of new dissipative structure and exploration of general stability analysis method for symmetric hyperbolic system
新耗散结构的阐明及对称双曲系统一般稳定性分析方法的探索
- 批准号:
21K13818 - 财政年份:2021
- 资助金额:
$ 42.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New developments in mathematical analysis of spatio-temporal nonuniform dynamics in quasilinear hyperbolic-parabolic conservation laws
拟线性双曲-抛物线守恒定律时空非均匀动力学数学分析新进展
- 批准号:
20H00118 - 财政年份:2020
- 资助金额:
$ 42.25万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Discontinuous Galerkin Isogeometric Analysis of Hyperbolic PDEs
双曲偏微分方程的不连续伽辽金等几何分析
- 批准号:
552071-2020 - 财政年份:2020
- 资助金额:
$ 42.25万 - 项目类别:
University Undergraduate Student Research Awards
Discontinuous Galerkin Isogeometric Analysis of Hyperbolic PDEs
双曲偏微分方程的不连续伽辽金等几何分析
- 批准号:
526316-2018 - 财政年份:2018
- 资助金额:
$ 42.25万 - 项目类别:
University Undergraduate Student Research Awards
Null structure and high frequency asymptotic analysis for nonlinear hyperbolic and dispersive equations
非线性双曲和色散方程的零结构和高频渐近分析
- 批准号:
17K05322 - 财政年份:2017
- 资助金额:
$ 42.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hyperbolic threshold dynamics: applications and analysis
双曲阈值动力学:应用与分析
- 批准号:
17K14229 - 财政年份:2017
- 资助金额:
$ 42.25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis of non-hyperbolic systems through theories and numerical analysis
通过理论和数值分析分析非双曲系统
- 批准号:
16K17609 - 财政年份:2016
- 资助金额:
$ 42.25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Coupling hyperbolic PDEs with switched DAEs: Analysis, numerics and application to blood flow models
双曲 PDE 与切换 DAE 的耦合:分析、数值及其在血流模型中的应用
- 批准号:
314078707 - 财政年份:2016
- 资助金额:
$ 42.25万 - 项目类别:
Priority Programmes














{{item.name}}会员




