EAGER: Real-Time: Precision Reserves from Flexible Loads: An Online Reinforcement Learning Approach
EAGER:实时:灵活负载的精度储备:在线强化学习方法
基本信息
- 批准号:1839616
- 负责人:
- 金额:$ 24.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal explores an online reinforcement learning framework that can provide high capacity rating and scheduling of many end user-level flexible resources such as swimming pools. In sharp contrast with conventional approaches of statically and uniformly treating end user loads with small capacity rating and scheduling them via heuristics based algorithms, the proposed framework will provide a theoretically rigorous and practically scalable approach for learning the unknown parameters of end user loads and adaptively controlling them with provable guarantees.Intellectual Merit: (i) This proposal will illustrate the possibility of substantial increasing of capacity credit from end user demand response in provision of spinning reserves via scalable real-time estimation and control as opposed to the conventional heuristic based scheduling algorithms. (ii) This proposal will introduce a learning and adaptive control algorithm using the framework of online reinforcement learning to address the operational problems when the consumer specific parameters are unknown. (iii) This proposal will introduce an index-based learning and scheduling algorithm that scales only linearly with the number of end users. (iv) This proposal will test a data-driven optimal scheduling that jointly maximize the profit for the aggregator and track the required reserve provision trajectory from the collection of even a small number of flexible users. The proposed research is generalizable towards many resource scheduling problems with uncertainty that arise in the context of transportation, communication, and other engineering dynamical systems.Broader Impacts:Once successful, this project will provide a systematic approach for obtaining spinning reserve at muchless cost from flexible end user resources in a provably reliable and environmentally sustainable way.This team will introduce new course modules on the topic of data-driven online learning in dynamical systems, which closely integrates reinforcement learning, dynamical control, and optimization for more than 200 undergraduate and graduate students currently enrolled in related areas courses at Texas A&M. This team will continue the strong track record of engaging undergraduate students for research, in particular the under-representative groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该提案探索了一种在线强化学习框架,可以提供高容量评级和许多最终用户级灵活资源(如游泳池)的调度。与传统的静态和统一处理具有小容量额定值的终端用户负载并通过基于算法的调度方法形成鲜明对比,所提出的框架将提供一种理论上严格且实际上可扩展的方法,用于学习终端用户负载的未知参数并以可证明的保证自适应地控制它们。(i)该建议将说明通过可扩展的实时估计和控制而不是传统的基于启发式的调度算法,在提供旋转储备时,从最终用户需求响应大幅增加容量信用的可能性。(ii)该建议将引入一种学习和自适应控制算法,使用在线强化学习的框架来解决消费者特定参数未知时的操作问题。(iii)该提案将引入一种基于索引的学习和调度算法,该算法仅随最终用户的数量线性扩展。(iv)该提案将测试数据驱动的最佳调度,该调度联合最大化聚合器的利润,并跟踪即使是少量灵活用户的集合所需的准备金提供轨迹。 所提出的研究可推广到许多资源调度问题的不确定性,出现在运输,通信和其他工程动态系统的背景下。一旦成功,该项目将提供一种系统化的方法,以可证明可靠和环境可持续的方式,从灵活的最终用户资源中以低成本获得旋转储备。该团队将引入新的课程模块,主题为动态系统中的数据驱动在线学习,该模块将强化学习,动态控制,和优化的200多名本科生和研究生目前就读于相关领域的课程在得克萨斯州A& M。该团队将继续保持吸引本科生参与研究的良好记录,特别是代表性不足的群体。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning with Safety Constraints: Sample Complexity of Reinforcement Learning for Constrained MDPs
- DOI:10.1609/aaai.v35i9.16937
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Aria HasanzadeZonuzy;D. Kalathil;S. Shakkottai
- 通讯作者:Aria HasanzadeZonuzy;D. Kalathil;S. Shakkottai
Communication-free Voltage Regulation in Distribution Networks with Deep PV Penetration
光伏深度渗透的配电网中的免通信电压调节
- DOI:10.24251/hicss.2020.390
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:El Helou, Rayan;Kalathil, Dileep;Xie, Le
- 通讯作者:Xie, Le
Sample Complexity of Robust Reinforcement Learning with a Generative Model
使用生成模型的鲁棒强化学习的样本复杂性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kishan Panaganti, Dileep Kalathil
- 通讯作者:Kishan Panaganti, Dileep Kalathil
Safe Online Convex Optimization with Unknown Linear Safety Constraints
- DOI:10.1609/aaai.v36i6.20566
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Sapana Chaudhary;D. Kalathil
- 通讯作者:Sapana Chaudhary;D. Kalathil
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Le Xie其他文献
Robust and real-time guidewire simulation based on Kirchhoff elastic rod for vascular intervention training
基于基尔霍夫弹性杆的鲁棒实时导丝模拟用于血管介入训练
- DOI:
10.1007/s12204-014-1551-1 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Maisheng Luo;Hong;Le Xie;Ping Cai;Li - 通讯作者:
Li
Multi-scale Integration of Physics-Based and Data-Driven Models in Power Systems
电力系统中基于物理和数据驱动的模型的多尺度集成
- DOI:
10.1109/iccps.2012.21 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Le Xie;Yun Zhang;M. Ilić - 通讯作者:
M. Ilić
Review on the interlimb neural coupling and its potential usage in walking rehabilitation
肢间神经耦合及其在步行康复中的潜在应用综述
- DOI:
10.1007/s12204-014-1541-3 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Juan Fang;Le Xie;Guo - 通讯作者:
Guo
Stress changes of lateral collateral ligament at different knee flexion with or without displaced movements: a 3-dimensional finite element analysis.
不同膝关节屈曲时外侧副韧带的应力变化,有或没有移位运动:3维有限元分析。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Y. Zhong;You Wang;Hai;Ke Rong;Le Xie - 通讯作者:
Le Xie
Engineering IT-Enabled Sustainable Electricity Services
工程 IT 支持的可持续电力服务
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Ilić;Le Xie;Qixing Liu - 通讯作者:
Qixing Liu
Le Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Le Xie', 18)}}的其他基金
Workshop: Towards Carbon-neutral Electricity and Mobility: The Infrastructure Challenges and Opportunities; Houston, Texas; 28 February - 1 March 2022
研讨会:迈向碳中和电力和交通:基础设施的挑战和机遇;
- 批准号:
2203357 - 财政年份:2022
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
RAPID: A Cross-Infrastructure Data-driven Approach to Modeling and Simulation of the 2021 Texas Power Outage
RAPID:跨基础设施数据驱动的 2021 年德克萨斯州停电建模和仿真方法
- 批准号:
2130945 - 财政年份:2021
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
A Cross-Domain Data-driven Approach to Analyzing and Predicting the Impact of COVID-19 on the U.S. Electricity Sector
跨域数据驱动方法分析和预测 COVID-19 对美国电力行业的影响
- 批准号:
2035688 - 财政年份:2020
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
Collaborative Research: High-Dimensional Spatio-Temporal Data Science for a Resilient Power Grid: Towards Real-Time Integration of Synchrophasor Data
合作研究:弹性电网的高维时空数据科学:同步相量数据的实时集成
- 批准号:
1934675 - 财政年份:2019
- 资助金额:
$ 24.88万 - 项目类别:
Continuing Grant
NSF Workshop on Real-time Learning and Decision Making of Dynamical Systems. To Be Held at NSF, February 12-13, 2018.
NSF 动态系统实时学习和决策研讨会。
- 批准号:
1818201 - 财政年份:2018
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
RAPID: Powering through the hurricane: self-organizing power electronics intelligence at the network edge
RAPID:渡过飓风:网络边缘的自组织电力电子智能
- 批准号:
1760554 - 财政年份:2017
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
Microgrid Interconnections Control via Voltage Angle Droop Methods
通过电压角下垂方法进行微电网互连控制
- 批准号:
1611301 - 财政年份:2016
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
EAGER: A Dynamical Systems Approach to Modeling and Controlling Responsive Demand in Electric Power Systems
EAGER:电力系统响应需求建模和控制的动态系统方法
- 批准号:
1546682 - 财政年份:2015
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
Capacity Building: Collaborative Research: Integrated Learning Environment for Cyber Security of Smart Grid
能力建设:协作研究:智能电网网络安全的集成学习环境
- 批准号:
1303378 - 财政年份:2013
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
Collaborative Research: CyberSEES: Coupon Incentive-based Risk Aware Demand Response in Smart Grid
合作研究:CyberSEES:智能电网中基于优惠券激励的风险意识需求响应
- 批准号:
1331863 - 财政年份:2013
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Building a Provable Differentially Private Real-time Data-blind ML Algorithm: A case study on Enhancing STEM Student Engagement in Online Learning
EAGER:构建可证明的差分隐私实时数据盲机器学习算法:关于增强 STEM 学生在线学习参与度的案例研究
- 批准号:
2329919 - 财政年份:2023
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2405142 - 财政年份:2023
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151021 - 财政年份:2022
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151022 - 财政年份:2022
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
- 批准号:
2210198 - 财政年份:2022
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
EAGER: Compact Field Portable Biophotonics Instrument for Real-Time Automated Analysis and Identification of Blood Cells Impact Impacted by COVID-19
EAGER:紧凑型现场便携式生物光子学仪器,用于实时自动分析和识别受 COVID-19 影响的血细胞
- 批准号:
2141473 - 财政年份:2022
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151020 - 财政年份:2022
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
EAGER: MEMS Enabled Real Time Detection of Pathogens Viruses and Biomarkers
EAGER:MEMS 实现病原体病毒和生物标记物的实时检测
- 批准号:
2210471 - 财政年份:2022
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Development of an Energy-Harvesting Real-time Under-ice Monitoring System in the Arctic Ocean
EAGER:合作研究:北冰洋能量收集实时冰下监测系统的开发
- 批准号:
2134146 - 财政年份:2021
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays
EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化
- 批准号:
2141008 - 财政年份:2021
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant