A Cross-Domain Data-driven Approach to Analyzing and Predicting the Impact of COVID-19 on the U.S. Electricity Sector
跨域数据驱动方法分析和预测 COVID-19 对美国电力行业的影响
基本信息
- 批准号:2035688
- 负责人:
- 金额:$ 33.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims at developing a cross-domain, data-driven approach to tracking and measuring the impact of the ongoing COVID-19 pandemic on the U.S. electricity sector. The COVID-19 crisis has gone beyond anybody’s wildest imagination and is turning out to be a once-in-a-century societal challenge. As the lifeblood of civil society and a key enabling infrastructure system, the electricity sector is quickly adjusting to the new normal, and it is crucial to understand the severity and the resiliency of the grid in response to disruption caused by COVID-19. This project substantiates a data-driven, science-based approach to evaluating the impact of various policy options on the operation of the electric energy infrastructure. Once successfully pursued, the project will provide much needed planning decision support for the electricity sector. The research program will be tightly coupled with an educational effort to train future leaders in the electricity and public health sectors. The research team has engaged female and African American students in building the preliminary version of this data hub and to continue research on the project. The team is also working with the industry members to provide training materials to a broad set of industry affiliatesThe goal of this project is to develop a first-of-its-kind cross-domain data hub and data-driven analysis of the COVID’s impact on the U.S. electricity sector. The approach is to 1) build a comprehensive open-access data hub with quality monitoring and daily updates, 2) quantify the sensitivity of electricity consumption with respect to social distancing and public health policies by using Ensemble Backcast Models and Restricted Vector Autoregression (VAR), and 3) construct a predictive model for the electricity sector considering social distancing policies and mobility in different sectors. The contribution of this project is four-fold. First, this is a first-of-its-kind data hub that combines otherwise unrelated domains of data like electricity markets, public health, and mobility data into a coherent infrastructure. A machine learning-based cleaning and pre-processing technique is proposed. Second, a statistical approach is proposed to quantify the unique impact of a public health crisis on the electricity sector. This entails building and analyzing novel statistical models that encompass societal mobility and public health data into the regression analysis of electricity consumption in major hot spots in the U.S. Third, a novel concept of elasticity of power consumption with respect to societal mobility is proposed and substantiated as an effective indicator of the power consumption as a function of social distancing policy measures. Last but not least, this project will combine all the above three innovations to create a first-of-its-kind predictive model of electricity sector as a function of social distancing policies and public health data. Drawing upon expertise from biostatistics and electric power engineering, this project will contribute to the cross-fertilization between the public health and electric energy sectors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发一种跨领域的数据驱动方法,以跟踪和衡量持续的COVID-19疫情对美国电力行业的影响。COVID-19危机已经超出了任何人最疯狂的想象,并正在成为百年一遇的社会挑战。作为公民社会的命脉和关键的基础设施系统,电力行业正在迅速适应新常态,了解电网在应对COVID-19造成的中断时的严重性和弹性至关重要。该项目证实了一种数据驱动的、以科学为基础的方法,用于评估各种政策选择对电力基础设施运营的影响。一旦成功实施,该项目将为电力部门提供急需的规划决策支持。该研究计划将与教育工作紧密结合,以培养电力和公共卫生部门的未来领导者。研究小组已让女性和非裔美国学生参与建立这一数据中心的初步版本,并继续对该项目进行研究。该团队还与行业成员合作,为广泛的行业分支机构提供培训材料。该项目的目标是开发首个跨域数据中心,并对COVID对美国电力行业的影响进行数据驱动分析。该方法是:1)建立一个全面的开放访问数据中心,并进行质量监控和每日更新; 2)通过使用环境回溯模型和限制向量自回归(VAR)来量化电力消耗对社交距离和公共卫生政策的敏感性;以及3)考虑不同行业的社交距离政策和流动性,构建电力行业的预测模型。该项目的贡献有四个方面。首先,这是一个首创的数据中心,它将电力市场、公共卫生和移动数据等不相关的数据领域整合到一个连贯的基础设施中。提出了一种基于机器学习的清洁和预处理技术。其次,提出了一种统计方法来量化公共卫生危机对电力部门的独特影响。这需要建立和分析新的统计模型,包括社会流动性和公共卫生数据到电力消费的回归分析在美国的主要热点第三,一个新的概念,电力消费的弹性相对于社会流动性提出并证实作为一个有效的指标的电力消费作为一个功能的社会距离政策措施。最后但并非最不重要的是,该项目将联合收割机结合上述三项创新,创建一个电力部门的首个预测模型,作为社交距离政策和公共卫生数据的函数。该项目利用生物统计学和电力工程的专业知识,将有助于公共卫生和电力能源部门之间的交叉施肥。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward carbon-neutral electricity and mobility: Is the grid infrastructure ready?
迈向碳中和电力和交通:电网基础设施准备好了吗?
- DOI:10.1016/j.joule.2021.06.011
- 发表时间:2021
- 期刊:
- 影响因子:39.8
- 作者:Xie, Le;Singh, Chanan;Mitter, Sanjoy K.;Dahleh, Munther A.;Oren, Shmuel S.
- 通讯作者:Oren, Shmuel S.
Extreme events, energy security and equality through micro- and macro-levels: Concepts, challenges and methods
微观和宏观层面的极端事件、能源安全和平等:概念、挑战和方法
- DOI:10.1016/j.erss.2021.102401
- 发表时间:2022
- 期刊:
- 影响因子:6.7
- 作者:Chen, Chien-fei;Dietz, Thomas;Fefferman, Nina H.;Greig, Jamie;Cetin, Kristen;Robinson, Caitlin;Arpan, Laura;Schweiker, Marcel;Dong, Bing;Wu, Wenbo
- 通讯作者:Wu, Wenbo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Le Xie其他文献
Review on the interlimb neural coupling and its potential usage in walking rehabilitation
肢间神经耦合及其在步行康复中的潜在应用综述
- DOI:
10.1007/s12204-014-1541-3 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Juan Fang;Le Xie;Guo - 通讯作者:
Guo
Multi-scale Integration of Physics-Based and Data-Driven Models in Power Systems
电力系统中基于物理和数据驱动的模型的多尺度集成
- DOI:
10.1109/iccps.2012.21 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Le Xie;Yun Zhang;M. Ilić - 通讯作者:
M. Ilić
Robust and real-time guidewire simulation based on Kirchhoff elastic rod for vascular intervention training
基于基尔霍夫弹性杆的鲁棒实时导丝模拟用于血管介入训练
- DOI:
10.1007/s12204-014-1551-1 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Maisheng Luo;Hong;Le Xie;Ping Cai;Li - 通讯作者:
Li
Engineering IT-Enabled Sustainable Electricity Services
工程 IT 支持的可持续电力服务
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Ilić;Le Xie;Qixing Liu - 通讯作者:
Qixing Liu
An Active Learning-Based Approach for Hosting Capacity Analysis in Distribution Systems
一种基于主动学习的配电系统托管容量分析方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:9.6
- 作者:
Kiyeob Lee;Penghui Zhao;A. Bhattacharya;B. Mallick;Le Xie - 通讯作者:
Le Xie
Le Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Le Xie', 18)}}的其他基金
Workshop: Towards Carbon-neutral Electricity and Mobility: The Infrastructure Challenges and Opportunities; Houston, Texas; 28 February - 1 March 2022
研讨会:迈向碳中和电力和交通:基础设施的挑战和机遇;
- 批准号:
2203357 - 财政年份:2022
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
RAPID: A Cross-Infrastructure Data-driven Approach to Modeling and Simulation of the 2021 Texas Power Outage
RAPID:跨基础设施数据驱动的 2021 年德克萨斯州停电建模和仿真方法
- 批准号:
2130945 - 财政年份:2021
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Collaborative Research: High-Dimensional Spatio-Temporal Data Science for a Resilient Power Grid: Towards Real-Time Integration of Synchrophasor Data
合作研究:弹性电网的高维时空数据科学:同步相量数据的实时集成
- 批准号:
1934675 - 财政年份:2019
- 资助金额:
$ 33.5万 - 项目类别:
Continuing Grant
NSF Workshop on Real-time Learning and Decision Making of Dynamical Systems. To Be Held at NSF, February 12-13, 2018.
NSF 动态系统实时学习和决策研讨会。
- 批准号:
1818201 - 财政年份:2018
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
EAGER: Real-Time: Precision Reserves from Flexible Loads: An Online Reinforcement Learning Approach
EAGER:实时:灵活负载的精度储备:在线强化学习方法
- 批准号:
1839616 - 财政年份:2018
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
RAPID: Powering through the hurricane: self-organizing power electronics intelligence at the network edge
RAPID:渡过飓风:网络边缘的自组织电力电子智能
- 批准号:
1760554 - 财政年份:2017
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Microgrid Interconnections Control via Voltage Angle Droop Methods
通过电压角下垂方法进行微电网互连控制
- 批准号:
1611301 - 财政年份:2016
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
EAGER: A Dynamical Systems Approach to Modeling and Controlling Responsive Demand in Electric Power Systems
EAGER:电力系统响应需求建模和控制的动态系统方法
- 批准号:
1546682 - 财政年份:2015
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Capacity Building: Collaborative Research: Integrated Learning Environment for Cyber Security of Smart Grid
能力建设:协作研究:智能电网网络安全的集成学习环境
- 批准号:
1303378 - 财政年份:2013
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Collaborative Research: CyberSEES: Coupon Incentive-based Risk Aware Demand Response in Smart Grid
合作研究:CyberSEES:智能电网中基于优惠券激励的风险意识需求响应
- 批准号:
1331863 - 财政年份:2013
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
相似国自然基金
拟连续domain范畴的若干问题研究
- 批准号:12301583
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
格值蕴涵算子与Domain理论中的若干问题
- 批准号:12331016
- 批准年份:2023
- 资助金额:193.00 万元
- 项目类别:重点项目
Domain理论中概率幂构造的若干问题研究
- 批准号:12371457
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
To空间上Domain理论中若干问题研究
- 批准号:12261040
- 批准年份:2022
- 资助金额:28 万元
- 项目类别:地区科学基金项目
面向Jung-Tix问题的Domain理论与量化序理论研究
- 批准号:12231007
- 批准年份:2022
- 资助金额:235 万元
- 项目类别:重点项目
C2 DOMAIN PROTEIN 1 (C2DP1)基因家族在植物开花调控中的功能研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
第四届Domain理论与拓扑学青年学者论坛
- 批准号:12242110
- 批准年份:2022
- 资助金额:5.00 万元
- 项目类别:专项项目
Domain理论中的收敛性与K-有界Sober空间范畴
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
广义Domain结构的表示理论研究
- 批准号:12171149
- 批准年份:2021
- 资助金额:51 万元
- 项目类别:面上项目
Non-Hausdorff拓扑和Domain理论中若干问题研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
EAGER: Algorithms for Analyzing Faulty Data Using Domain Information
EAGER:使用域信息分析错误数据的算法
- 批准号:
2414736 - 财政年份:2024
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411153 - 财政年份:2024
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
CAREER: Data to Models (D2M), A Domain-Guided Translation of Sensor Data to Analytical Structural Models
职业:数据到模型 (D2M),传感器数据到分析结构模型的领域引导转换
- 批准号:
2340115 - 财政年份:2024
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411151 - 财政年份:2024
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Fully automated protein NMR assignments and structures from raw time-domain data by deep learning
通过深度学习根据原始时域数据全自动进行蛋白质 NMR 分配和结构
- 批准号:
23K05660 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Excellence in Research: Harnessing Big Data and Domain Knowledge to Advance Deep Learning for Interpretable Cell Quantitation
卓越的研究:利用大数据和领域知识推进深度学习以实现可解释的细胞定量
- 批准号:
2302274 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Establishment of the method for biological tissue domain estimation and analysis based on spatial omics data
基于空间组学数据的生物组织域估计与分析方法的建立
- 批准号:
23K11303 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: III: Learning with less data: Capitalizing on formal pedagogies and human performance to incorporate domain knowledge into deep learning models
EAGER:III:用更少的数据学习:利用正规教学法和人类表现将领域知识纳入深度学习模型
- 批准号:
2228910 - 财政年份:2022
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Time-domain processing for ocean surface parameter extraction from HF-radar data and related applications
从高频雷达数据提取海洋表面参数的时域处理及相关应用
- 批准号:
RGPIN-2020-07155 - 财政年份:2022
- 资助金额:
$ 33.5万 - 项目类别:
Discovery Grants Program - Individual