Accelerated Learning and Assessment in Engineering Mechanics

工程力学的加速学习和评估

基本信息

项目摘要

Repeated deliberate practice in problem-solving can increase students' understanding of difficult engineering concepts. In addition, students who receive frequent formative feedback are better able to identify and correct problems with their reasoning. Unfortunately, few undergraduate engineering courses provide students with such opportunities for repeated practice, targeted feedback, and focused tutoring. This project aims to enable these opportunities by developing an automated educational intervention tool for learning engineering mechanics. This open-access, problem-solving interface will provide engineering students with feedback and tutoring, based on their performance on practice exercises. Since all developed materials will be open-source and open-access, the project can also inform and support the work of students and teachers beyond the local institution. By focusing on developing strong analytical problem-solving skills, this project directly responds to industry and the federal government priorities for developing an engineering workforce that is capable of innovative problem solving. Thus, this project has the potential to contribute to the ability of the U.S. to maintain its economic competitiveness and position as a global leader in innovation. The project will: 1) develop an innovative problem delivery and assessment system and evaluate its effectiveness in meeting specific learning and assessment goals in engineering mechanics; 2) systematically study how this technology-rich problem-solving interface can enhance the learning, teaching, and assessment of complex knowledge through an education research study; and 3) critically evaluate opportunities and barriers to scaling and transferring the innovation across educational contexts. This study should contribute to understanding how technological solutions, such as automated tutoring systems, can enhance learning and assessment of complex knowledge and skills. As a result, this project is likely to have relevance for teaching and learning of other engineering topics, as well as topics in other STEM fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
反复刻意练习解决问题可以增加学生对困难工程概念的理解。此外,经常收到形成性反馈的学生能够更好地识别和纠正他们的推理问题。不幸的是,很少有本科工程课程为学生提供这样的机会,反复练习,有针对性的反馈和集中的辅导。本项目旨在通过开发一种学习工程力学的自动化教育干预工具来实现这些机会。这个开放访问、解决问题的界面将根据工程专业学生在实践练习中的表现,为他们提供反馈和辅导。由于所有开发的材料都将是开源和开放获取的,该项目还可以为当地机构以外的学生和教师的工作提供信息和支持。通过专注于培养强大的分析解决问题的能力,该项目直接回应了行业和联邦政府的优先事项,即培养能够创新解决问题的工程劳动力。因此,该项目有可能有助于美国保持其经济竞争力和全球创新领导者的地位。该项目将:1)开发一个创新的问题交付和评估系统,并评估其在满足工程力学特定学习和评估目标方面的有效性;2)通过教育研究性研究,系统研究这种技术丰富的问题解决界面如何增强复杂知识的学习、教学和评估;3)批判性地评估跨教育环境扩展和转移创新的机会和障碍。这项研究应该有助于理解技术解决方案,如自动化辅导系统,如何提高复杂知识和技能的学习和评估。因此,该项目可能与其他工程主题的教学和学习相关,以及其他STEM领域的主题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Designing an Interactive System for Accelerated Learning and Assessment in Engineering Mechanics: A First Look at the Deforms Problem-solving System
设计用于加速工程力学学习和评估的交互式系统:变形问题解决系统初探
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicole Pitterson其他文献

Development of the student course cognitive engagement instrument (SCCEI) for college engineering courses
  • DOI:
    10.1186/s40594-020-00220-9
  • 发表时间:
    2020-05-19
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Allyson Barlow;Shane Brown;Benjamin Lutz;Nicole Pitterson;Nathaniel Hunsu;Olusola Adesope
  • 通讯作者:
    Olusola Adesope

Nicole Pitterson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicole Pitterson', 18)}}的其他基金

CAREER: Building a Model of Instructional Congruence through Exploring the Role of Language in Introductory Undergraduate Engineering Courses
职业:通过探索语言在本科工程入门课程中的作用来建立教学一致性模型
  • 批准号:
    2237543
  • 财政年份:
    2023
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Continuing Grant
Advancing Student-Centered Teaching for Disciplinary Knowledge Building in Engineering
推进以学生为中心的工程学科知识建设教学
  • 批准号:
    2215989
  • 财政年份:
    2022
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Research: Collaboration in Engineering Student and Practitioner Teams: A Study of Beliefs about Effective Behaviors
协作研究:研究:工程学生和从业者团队的协作:有效行为信念的研究
  • 批准号:
    2217523
  • 财政年份:
    2022
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Initiation: Market-driven design concept formation in undergraduate engineers
合作研究:研究启动:本科工程师市场驱动设计概念的形成
  • 批准号:
    1927114
  • 财政年份:
    2019
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

I-Corps: Translation potential of learning engagement and assessment programs in multi-person virtual reality
I-Corps:多人虚拟现实中学习参与和评估项目的翻译潜力
  • 批准号:
    2417857
  • 财政年份:
    2024
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Standard Grant
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Research Grant
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
  • 批准号:
    10100967
  • 财政年份:
    2024
  • 资助金额:
    $ 29.85万
  • 项目类别:
    EU-Funded
A data-saving and self-supervised deep learning system for continuous ischemic stroke assessment
用于连续缺血性中风评估的数据保存和自我监督深度学习系统
  • 批准号:
    24K15011
  • 财政年份:
    2024
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
  • 批准号:
    10805177
  • 财政年份:
    2023
  • 资助金额:
    $ 29.85万
  • 项目类别:
Collaborative Research: SLES: Foundations of Qualitative and Quantitative Safety Assessment of Learning-enabled Systems
合作研究:SLES:学习型系统定性和定量安全评估的基础
  • 批准号:
    2331938
  • 财政年份:
    2023
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Standard Grant
Assessment of Dynamic Pile Driving Using Machine Learning
使用机器学习评估动态打桩
  • 批准号:
    DP230102781
  • 财政年份:
    2023
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Discovery Projects
Enabling the Assessment of Fetal Brain Development and Degeneration with Machine Learning
通过机器学习评估胎儿大脑发育和退化
  • 批准号:
    10659817
  • 财政年份:
    2023
  • 资助金额:
    $ 29.85万
  • 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
  • 批准号:
    10566299
  • 财政年份:
    2023
  • 资助金额:
    $ 29.85万
  • 项目类别:
Real-time assessment of alcohol and drug use and development of immediate intervention model based on machine learning
基于机器学习的酒精和药物使用实时评估及即时干预模型开发
  • 批准号:
    23H03192
  • 财政年份:
    2023
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了