CAREER: Understanding visual learning with self-supervised neural network models
职业:通过自监督神经网络模型理解视觉学习
基本信息
- 批准号:1844724
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A central problem in artificial intelligence today is that machine learning algorithms often require supervised training with huge amounts of hand-curated data. As a result, such algorithms are largely limited in scope to domains where well-funded organizations can build massive, expertly-annotated, and typically proprietary, labelled datasets. In contrast, real biological systems such as human infants learn much more efficiently, combining a small amount of explicit supervision with powerful -- but not fully understood -- mechanisms of self-supervision. This proposal seeks to build biologically-inspired general-purpose self-supervised systems that can learn without needing to be spoon-fed millions of labeled examples. The basic strategy to achieve this goal will be to develop and refine techniques in the emerging field of unsupervised deep learning, in which neural networks train themselves to capture the subtle statistical patterns present in their sensory surroundings. These networks will be augmented to operate as agents in a rich interactive physical domain, where they will seek out challenging but ultimately solvable self-supervised "goals" that will teach them to flexibly represent and respond to their environment. If successful, such systems will have the ability to use the wealth of unlabeled data that is ubiquitously available in the physical world. The proposal also seeks to use these algorithmic ideas as hypotheses for quantitative models of learning in real biological systems. Using recently developed techniques from computational neuroscience, the neural networks will be compared to neural and behavioral data collected using a wide spectrum of experimental paradigms. It will then be determined which self-supervised neural network learning models best capture the empirical data -- and equally importantly, where the most glaring mismatches between experiment and computational models lie. Quantifying these model-data comparisons will in turn allow for feedback to build better neural network algorithms. The ultimate goal of this work is to set up a tight loop between experimental observation and computational algorithm development, accelerating progress both in artificial intelligence and neuroscience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今人工智能的一个核心问题是,机器学习算法通常需要使用大量手工管理的数据进行有监督的训练。因此,这种算法的范围在很大程度上局限于资金充足的组织可以构建大量、经过专业注释的、通常是专有的标记数据集的领域。相比之下,真正的生物系统,如人类婴儿,学习效率要高得多,它将少量的显性监督与强大的--但尚未完全理解--的自我监督机制结合在一起。这项提议寻求建立受生物启发的通用自我监督系统,该系统可以学习,而不需要用勺子灌输数百万个有标签的例子。实现这一目标的基本策略将是开发和改进无监督深度学习这一新兴领域的技术,在该领域中,神经网络通过训练自己来捕获存在于其感觉环境中的微妙统计模式。这些网络将被扩展为在丰富的交互物理领域中作为代理运行,在那里他们将寻找具有挑战性但最终可解决的自我监督的“目标”,这些目标将教会他们灵活地表示和响应他们的环境。如果成功,这样的系统将有能力利用物理世界中无处不在的大量未标记数据。该提案还试图将这些算法思想用作真实生物系统中学习的量化模型的假设。利用计算神经科学最近开发的技术,神经网络将与使用广泛实验范例收集的神经和行为数据进行比较。然后,将确定哪种自我监督神经网络学习模型最好地捕捉经验数据--同样重要的是,实验模型和计算模型之间最明显的不匹配之处。量化这些模型-数据比较将反过来允许反馈,以构建更好的神经网络算法。这项工作的最终目标是在实验观察和计算算法开发之间建立一个紧密的循环,加速人工智能和神经科学的进步。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two Routes to Scalable Credit Assignment without Weight Symmetry
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:D. Kunin;Aran Nayebi;Javier Sagastuy-Breña;S. Ganguli;Jonathan M. Bloom;Daniel L. K. Yamins
- 通讯作者:D. Kunin;Aran Nayebi;Javier Sagastuy-Breña;S. Ganguli;Jonathan M. Bloom;Daniel L. K. Yamins
Developmental Curiosity and Social Interaction in Virtual Agents.
虚拟代理中的发展好奇心和社交互动。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Doyle C, Shader S
- 通讯作者:Doyle C, Shader S
Unsupervised Segmentation in Real-World Images via Spelke Object Inference
- DOI:10.48550/arxiv.2205.08515
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Honglin Chen;R. Venkatesh;Yoni Friedman;Jiajun Wu;J. Tenenbaum;Daniel L. K. Yamins;Daniel Bear
- 通讯作者:Honglin Chen;R. Venkatesh;Yoni Friedman;Jiajun Wu;J. Tenenbaum;Daniel L. K. Yamins;Daniel Bear
How Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning?
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chengxu Zhuang;Ziyu Xiang;Yoon Bai;Xiaoxuan Jia;N. Turk-Browne;K. Norman;J. DiCarlo;Daniel Yamins
- 通讯作者:Chengxu Zhuang;Ziyu Xiang;Yoon Bai;Xiaoxuan Jia;N. Turk-Browne;K. Norman;J. DiCarlo;Daniel Yamins
Active World Model Learning in Agent-rich Environments with Progress Curiosity
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Kuno Kim;Megumi Sano;Julian De Freitas;Nick Haber;Daniel L. K. Yamins
- 通讯作者:Kuno Kim;Megumi Sano;Julian De Freitas;Nick Haber;Daniel L. K. Yamins
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Yamins其他文献
Dynamic Task Assignment in Robot Swarms
机器人群中的动态任务分配
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
James McLurkin;Daniel Yamins - 通讯作者:
Daniel Yamins
FAR: End-to-End Vibrotactile Distributed System Designed to Facilitate Affect Regulation in Children Diagnosed with Autism Spectrum Disorder Through Slow Breathing
FAR:端到端振动触觉分布式系统,旨在通过缓慢呼吸促进被诊断患有自闭症谱系障碍的儿童的情绪调节
- DOI:
10.1145/3491102.3517619 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Pardis Miri;Mehul Arora;Aman Malhotra;R. Flory;Stephanie Hu;Ashley Lowber;Ishan Goyal;Jacqueline Nguyen;J. Hegarty;Marlo D Kohn;David Schneider;Heather Culbertson;Daniel Yamins;Lawrence K. Fung;A. Hardan;J. Gross;Keith Marzullo - 通讯作者:
Keith Marzullo
Mapping core similarity among visual objects across image modalities
跨图像模态映射视觉对象之间的核心相似性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Judith E. Fan;Daniel Yamins;J. DiCarlo;N. Turk - 通讯作者:
N. Turk
The BabyView camera: Designing a new head-mounted camera to capture children's early social and visual environments.
BabyView 相机:设计一款新型头戴式相机,用于捕捉儿童早期的社交和视觉环境。
- DOI:
10.3758/s13428-023-02206-1 - 发表时间:
2023 - 期刊:
- 影响因子:5.4
- 作者:
Bria L Long;Sarah Goodin;George Kachergis;V. Marchman;Samaher F. Radwan;Robert Z Sparks;Violet Xiang;Chengxu Zhuang;Oliver Hsu;Brett Newman;Daniel Yamins;Michael C. Frank - 通讯作者:
Michael C. Frank
Explanatory models in neuroscience, Part 2: Functional intelligibility and the contravariance principle
神经科学的解释模型,第 2 部分:功能可理解性和逆变原理
- DOI:
10.1016/j.cogsys.2023.101200 - 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Rosa Cao;Daniel Yamins - 通讯作者:
Daniel Yamins
Daniel Yamins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Yamins', 18)}}的其他基金
Collaborative Research: NCS-FR: Beyond the ventral stream: Reverse engineering the neurocomputational basis of physical scene understanding in the primate brain
合作研究:NCS-FR:超越腹侧流:逆向工程灵长类大脑中物理场景理解的神经计算基础
- 批准号:
2123963 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Incorporating Biological-Motivated Circuit Motifs into Large-Scale Deep Neural Network Models of the Brain
RI:中:协作研究:将生物驱动的电路基序纳入大脑的大规模深度神经网络模型
- 批准号:
1703161 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding how predictions modulate visual perception
了解预测如何调节视觉感知
- 批准号:
DE240100327 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the Impact of Vaping Prevention Ads on Adolescents and Young Adults
了解电子烟预防广告对青少年和年轻人的影响
- 批准号:
10665870 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Understanding the Role of Extracellular Vesicle/Exosome Transport in the Visual System
了解细胞外囊泡/外泌体运输在视觉系统中的作用
- 批准号:
2890845 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Studentship
Understanding the computational principle of visual objects
理解视觉对象的计算原理
- 批准号:
23H03698 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Understanding the neurodevelopmental effects of youth tackle football participation
了解青少年参与橄榄球运动对神经发育的影响
- 批准号:
10742262 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Understanding the Numbers: Quantitative Literacy for Experimental Rigor
理解数字:实验严谨性的定量素养
- 批准号:
10722653 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Understanding the Conceptual Priority Map Guiding Naturalistic Visual Attention for Autistic Individuals
了解指导自闭症患者自然视觉注意力的概念优先级图
- 批准号:
10829114 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
A dynamic interactive account of human visual action understanding
人类视觉动作理解的动态交互描述
- 批准号:
ES/X005534/1 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Understanding the neuronal substrates of flexible visual processing in everyday life
了解日常生活中灵活视觉处理的神经元基质
- 批准号:
2898985 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Studentship