CAREER: Understanding Interfaces in Solid State Energy Storage Systems and Cross-Disciplinary Education
职业:了解固态储能系统中的接口和跨学科教育
基本信息
- 批准号:1847029
- 负责人:
- 金额:$ 51.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advanced lithium-ion batteries for vehicle transport and renewable electricity grid storage applications could improve domestic energy security but performance gaps in cost and battery lifetime limit use. The main cause of battery failure is undesirable chemical side reactions within the device that are difficult to quantify and to understand. Because of the lack of fundamental understanding, engineers are less able to design materials and devices that can last the expected lifetimes. This CAREER project will conduct fundamental research on advanced solid-state hybrid electrolytes that have the potential for greater energy density while retaining a safe operating environment. These hybrid electrolytes could replace currently used liquid organic electrolytes that have had issues with long cycle life. The active material's (lithium ion) transport within the electrolyte and to the electrode is not fully understood in these hybrids. This project will address fundamental knowledge of the underlying physics and chemical transformations that support understanding of ionic transport in the hybrid electrolytes. This knowledge will also have far-reaching applications of chemical sensors, fuel cells, and other battery chemistries. The educational plan intends to integrate the research findings directly into the Nashville community through outreach programs run through the Vanderbilt Institute for Nanoscience Engineering, Vanderbilt Engineering Ambassadors, and a research internship program with Harpeth Hall School for Girls. All outreach activities seek to expand scientific and engineering opportunities to underrepresented communities in STEM. This project will examine ionic transport pathways in a family of solid ion hybrid conductors. These electrolytes are composed of two different types of ion conductors: (1) polymers and (2) ceramics. Currently, it is unknown how ionic transport occurs between these two materials within the electrolyte. In order to achieve batteries that can be charged quickly and last a long time, it is necessary to control ion transport between these two materials. The research objective of this CAREER project is to understand ionic transport by focusing on the characterization of ion transport at the interfaces within the electrolyte. There are two types of interfaces that can form in a solid electrolyte: intrinsic and extrinsic. Intrinsic interfaces occur in hybrid electrolytes between inorganic and organic constituents, and also occur in ceramic ion conductors at grain boundaries. These are examples of interfaces where an ion moves between ion conductors. Extrinsic interfaces are interfaces that emerge during device integration (electrode|electrolyte) and can affect performance. These interfaces involve transport between an ion conductor and a mixed ion and electron conductor. Establishing the role interfaces have on ionic transport will enable pathways toward achieving the competitive performance and functionality. This project will use a multi-modal approach which couples physics-based modeling with electrochemical, spectroscopy, x-ray, and neutron experiments to describe transport mechanisms in hybrid solid electrolytes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于车辆运输和可再生电网存储应用的先进锂离子电池可以提高国内能源安全,但成本和电池寿命方面的性能差距限制了使用。电池故障的主要原因是器械内的不良化学副反应,这些副反应难以量化和理解。由于缺乏基本的理解,工程师们不太能够设计出能够持续预期寿命的材料和设备。该CAREER项目将对先进的固态混合电解质进行基础研究,这些电解质具有更大的能量密度,同时保持安全的操作环境。这些混合电解质可以取代目前使用的具有长循环寿命问题的液体有机电解质。在这些混合物中,活性材料(锂离子)在电解质内和到电极的传输没有被完全理解。这个项目将解决的基础物理和化学转换,支持理解的离子运输的混合电解质的基础知识。这些知识还将对化学传感器、燃料电池和其他电池化学物质产生深远的应用。教育计划打算通过范德比尔特纳米科学工程研究所、范德比尔特工程大使和哈佩斯霍尔女子学校的研究实习计划,将研究成果直接融入纳什维尔社区。所有外联活动都力求将科学和工程机会扩大到STEM中代表性不足的社区。本计画将探讨一系列固态离子混合导体中的离子传输路径。这些电解质由两种不同类型的离子导体组成:(1)聚合物和(2)陶瓷。目前,尚不清楚电解质内这两种材料之间的离子传输是如何发生的。为了实现能够快速充电并持续很长时间的电池,有必要控制这两种材料之间的离子传输。这个CAREER项目的研究目标是通过专注于电解质内界面处离子传输的表征来了解离子传输。 在固体电解质中可以形成两种类型的界面:内在的和外在的。本征界面出现在无机和有机成分之间的混合电解质中,也出现在陶瓷离子导体的晶界处。这些是离子在离子导体之间移动的界面的示例。外部界面是在器件集成(电极)过程中出现的界面|电解质),并可能影响性能。这些界面涉及离子导体与混合离子和电子导体之间的传输。确定界面对离子转运的作用将使实现竞争性性能和功能的途径成为可能。 该项目将使用多模态方法,将基于物理的建模与电化学、光谱学、X射线和中子实验相结合,以描述混合固体电解质中的传输机制。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoscale Mapping of Extrinsic Interfaces in Hybrid Solid Electrolytes
- DOI:10.1016/j.joule.2019.11.015
- 发表时间:2020-01-15
- 期刊:
- 影响因子:39.8
- 作者:Dixit, Marm B.;Zaman, Wahid;Hatzell, Kelsey B.
- 通讯作者:Hatzell, Kelsey B.
Not All Lithium Filaments Are the Same in Solid-State Batteries
固态电池中并非所有锂丝都相同
- DOI:10.1016/j.joule.2020.03.021
- 发表时间:2020
- 期刊:
- 影响因子:39.8
- 作者:Hatzell, Kelsey B.
- 通讯作者:Hatzell, Kelsey B.
Challenges in Lithium Metal Anodes for Solid-State Batteries
- DOI:10.1021/acsenergylett.9b02668
- 发表时间:2020-03-13
- 期刊:
- 影响因子:22
- 作者:Hatzell, Kelsey B.;Chen, Xi Chelsea;Zeier, Wolfgang G.
- 通讯作者:Zeier, Wolfgang G.
In situ investigation of water on MXene interfaces
- DOI:10.1073/pnas.2108325118
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:W. Zaman;Ray A. Matsumoto;M. Thompson;Yu-Hsuan Liu;Y. Bootwala;Marm B. Dixit;S. Nemšák;E. Crumlin;M. Hatzell;P. Cummings;K. Hatzell
- 通讯作者:W. Zaman;Ray A. Matsumoto;M. Thompson;Yu-Hsuan Liu;Y. Bootwala;Marm B. Dixit;S. Nemšák;E. Crumlin;M. Hatzell;P. Cummings;K. Hatzell
Processing and manufacturing of next generation lithium-based all solid-state batteries
- DOI:10.1016/j.cossms.2022.101003
- 发表时间:2022
- 期刊:
- 影响因子:11
- 作者:W. Zaman;K. Hatzell
- 通讯作者:W. Zaman;K. Hatzell
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelsey Hatzell其他文献
Kelsey Hatzell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelsey Hatzell', 18)}}的其他基金
Conference: Gordon Research Conference on Batteries-Ventura
会议:戈登电池研究会议-文图拉
- 批准号:
2415014 - 财政年份:2024
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Evaluating thermo-electro-adsorption mechanisms for waste-heat driven ion-separation processes
合作研究:GOALI:评估废热驱动离子分离过程的热电吸附机制
- 批准号:
2140376 - 财政年份:2021
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
CAREER: Understanding Interfaces in Solid State Energy Storage Systems and Cross-Disciplinary Education
职业:了解固态储能系统中的接口和跨学科教育
- 批准号:
2140472 - 财政年份:2021
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
Collaborative Research: Unraveling the role of chemo-mechanics in all solid state batteries
合作研究:揭示化学力学在全固态电池中的作用
- 批准号:
2041505 - 财政年份:2021
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Evaluating thermo-electro-adsorption mechanisms for waste-heat driven ion-separation processes
合作研究:GOALI:评估废热驱动离子分离过程的热电吸附机制
- 批准号:
1821573 - 财政年份:2018
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
Collaborative Research: Co-extrusion of Organic-Inorganic Colloidal Inks for Energy Conversion Applications
合作研究:用于能量转换应用的有机-无机胶体油墨共挤出
- 批准号:
1727863 - 财政年份:2017
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
EPRI/WERF: Collaborative Research: Electrical percolation in flowable electrodes for energy-efficient water re-use applications
EPRI/WERF:合作研究:可流动电极中的电渗透用于节能水再利用应用
- 批准号:
1706956 - 财政年份:2017
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
Understanding the physico-chemical evolution at the steel-cement interfaces in geological CO2 storage environments
了解地质二氧化碳储存环境中钢-水泥界面的物理化学演化
- 批准号:
2911029 - 财政年份:2024
- 资助金额:
$ 51.56万 - 项目类别:
Studentship
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342024 - 财政年份:2024
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
- 批准号:
2340085 - 财政年份:2024
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
An Atomic Level Understanding of Optimal Characteristics of TiO2 Protection Layers and Photoelectrode/TiO2 Interfaces for Efficient and Stable Solar Fuel Production
从原子水平了解 TiO2 保护层和光电极/TiO2 界面的最佳特性,以实现高效、稳定的太阳能燃料生产
- 批准号:
2350199 - 财政年份:2024
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: Prediction and understanding of thermal transport across successive interfaces
职业:预测和理解连续界面上的热传输
- 批准号:
2337749 - 财政年份:2024
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
NCS-FR: Insect-based brain-machine interfaces and robots for understanding odor-driven navigation
NCS-FR:基于昆虫的脑机接口和机器人,用于理解气味驱动的导航
- 批准号:
2319060 - 财政年份:2023
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
Understanding dynamic interfaces in electrochemical systems
了解电化学系统中的动态界面
- 批准号:
FT220100666 - 财政年份:2023
- 资助金额:
$ 51.56万 - 项目类别:
ARC Future Fellowships
Understanding and controlling complex modified electrochemical interfaces using novel measurements and model systems
使用新颖的测量和模型系统理解和控制复杂的改性电化学界面
- 批准号:
RGPIN-2022-04419 - 财政年份:2022
- 资助金额:
$ 51.56万 - 项目类别:
Discovery Grants Program - Individual
US-Ireland R&D Partnership: Ga2O3: Understanding Growth, Interfaces and Defects to enable next generation Electronics (GUIDE)
美国-爱尔兰 R
- 批准号:
2154535 - 财政年份:2022
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant