Applications of Tensor Categories in Operator Algebras
张量范畴在算子代数中的应用
基本信息
- 批准号:1901082
- 负责人:
- 金额:$ 11.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symmetries play a fundamental role across the spectrum of mathematical sciences, especially as a unifying principle in physics. Classically symmetries of a physical system are described by algebraic objects known as groups, which act on the observables of the system. In quantum systems, however, the observables are described by noncommutative operator algebras (C* and von Neumann algebras). In this setting a new kind of symmetry emerges. The algebraic objects that naturally arise are called tensor categories, and have proved to be very successful at describing symmetries of low dimensional quantum field theories, topological phases of matter, and quantum statistical mechanics. The goal of this project is to apply the theory of tensor categories to understand the relationship between noncommutative operator algebras, as well as exploring the role of tensor categories in low dimensional quantum systems.This project focuses on three main problems. The first is to use tensor categories to classify and construct discrete inclusions of von Neumann algebras building on recent progress in this area, furthering the work of the PI with David Penneys and with Shamindra K. Ghosh. The second is the study of Alain Connes' chi invariant for finite von Neumann algebras from the point of view of braided tensor categories. We propose a generalization of this invariant using non-invertible bimodules, along with new methods of computation of this invariant that will allow us to distinguish previously indistinguishable classes of von Neumann algebras. Finally, we investigate the algebraic process of gauging braided tensor categories, which described the interaction between quantum and classical symmetry in topological phases of condensed matter systems. This is an important construction from the physical point of view, but mathematically difficult to understand. The primary problem for this project is to establish the existence of gauged categories in physically relevant situations such as permutation symmetry, generalizing the results of the PI with Terry Gannon.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称性在整个数学科学中扮演着重要的角色,特别是作为物理学中的统一原则。物理系统的经典对称性由称为群的代数对象描述,它们作用于系统的可观测量。然而,在量子系统中,观测量是由非交换算子代数(C* 和冯诺依曼代数)描述的。在这种情况下,一种新的对称性出现了。自然产生的代数对象被称为张量范畴,并已被证明在描述低维量子场论、物质的拓扑相和量子统计力学的对称性方面非常成功。本项目的目标是应用张量范畴理论来理解非交换算子代数之间的关系,以及探索张量范畴在低维量子系统中的作用。本项目主要关注三个问题。第一个是使用张量范畴来分类和构造冯诺依曼代数的离散包含,这是基于这一领域的最新进展,进一步推进了PI与大卫彭尼和沙明德拉K.高希第二部分是从辫张量范畴的角度研究有限von Neumann代数的Alain Connes chi不变量。我们提出了一个推广的不变量使用不可逆的双模,沿着与新的方法计算这个不变量,这将使我们能够区分以前无法区分类的冯诺依曼代数。最后,我们研究了规范辫状张量范畴的代数过程,辫状张量范畴描述了凝聚态系统拓扑相中量子对称性与经典对称性之间的相互作用。从物理学的角度来看,这是一个重要的结构,但在数学上很难理解。该项目的主要问题是建立在物理相关的情况下,如置换对称性,推广PI与特里甘农的结果存在计量类别。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A categorical Connes’ $$\chi (M)$$
绝对 Connesâ $$chi (M)$$
- DOI:10.1007/s00208-023-02695-7
- 发表时间:2023
- 期刊:
- 影响因子:1.4
- 作者:Chen, Quan;Jones, Corey;Penneys, David
- 通讯作者:Penneys, David
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Corey Jones其他文献
Annular representation theory with applications to approximation and rigidity properties for rigid C*-tensor categories
环形表示理论及其在刚性 C* 张量类别的近似和刚性特性中的应用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Corey Jones - 通讯作者:
Corey Jones
Community Screening Outcomes for Diabetes, Hypertension, and Cholesterol: Nashville REACH 2010 Project
糖尿病、高血压和胆固醇的社区筛查结果:纳什维尔 REACH 2010 项目
- DOI:
10.1097/jac.0b013e3181dd4619 - 发表时间:
2010 - 期刊:
- 影响因子:2.3
- 作者:
Kushal A. Patel;C. Larson;M. Hargreaves;D. Schlundt;Hong Wang;Corey Jones;Katina R Beard - 通讯作者:
Katina R Beard
Quetiapine: an effective antipsychotic in first-episode schizophrenia despite only transiently high dopamine-2 receptor blockade.
喹硫平:尽管仅具有短暂的高多巴胺 2 受体阻断作用,但仍是治疗首发精神分裂症的有效抗精神病药。
- DOI:
10.4088/jcp.v63n1106 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
S. Tauscher‐Wisniewski;S. Kapur;J. Tauscher;Corey Jones;Z. Daskalakis;G. Papatheodorou;I. Epstein;B. Christensen;R. Zipursky - 通讯作者:
R. Zipursky
471 - 'Typical' vs. 'Atypical': Lessons from pet studies of 5-HT<sub>2</sub> and D<sub>2</sub> occupancy of antipsychotics
- DOI:
10.1016/s0920-9964(97)82479-6 - 发表时间:
1997-01-01 - 期刊:
- 影响因子:
- 作者:
Shitij Kapur;Gary Remington;Corey Jones;Sylvain Houle;Robert Zipursky - 通讯作者:
Robert Zipursky
Instrumentally Detected Changes in Motor Functioning in Patients with Low Levels of Antipsychotic Dopamine D2 Blockade
仪器检测低水平抗精神病药物多巴胺 D2 阻断患者运动功能的变化
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:7.6
- 作者:
P. Fitzgerald;S. Kapur;M. Caligiuri;Corey Jones;S. Silvestri;G. Remington;R. Zipursky - 通讯作者:
R. Zipursky
Corey Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Corey Jones', 18)}}的其他基金
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
- 批准号:
2247202 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
Standard Grant
Applications of Tensor Categories in Operator Algebras
张量范畴在算子代数中的应用
- 批准号:
2100531 - 财政年份:2020
- 资助金额:
$ 11.35万 - 项目类别:
Standard Grant
相似国自然基金
基于Tensor Train分解的两类张量优化问题的研究及其应用
- 批准号:11701132
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
- 批准号:61072105
- 批准年份:2010
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Braided tensor categories, higher Picard groups, and classification of topological phases of matter
辫状张量类别、高皮卡德群以及物质拓扑相的分类
- 批准号:
2302267 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
Standard Grant
Quivers in quantum symmetry: a path algebra framework for algebras in tensor categories
量子对称性中的颤动:张量范畴代数的路径代数框架
- 批准号:
2303334 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
Standard Grant
CAREER: Cohomology, classification, and constructions of tensor categories
职业:张量类别的上同调、分类和构造
- 批准号:
2146392 - 财政年份:2022
- 资助金额:
$ 11.35万 - 项目类别:
Continuing Grant
New constructions and techniques for tensor categories
张量类别的新结构和技术
- 批准号:
DP210100251 - 财政年份:2022
- 资助金额:
$ 11.35万 - 项目类别:
Discovery Projects
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
- 批准号:
2228888 - 财政年份:2022
- 资助金额:
$ 11.35万 - 项目类别:
Standard Grant
Subfactors, Tensor Categories, and Higher Dimensional Algebra
子因子、张量类别和高维代数
- 批准号:
2000093 - 财政年份:2020
- 资助金额:
$ 11.35万 - 项目类别:
Standard Grant
Homological Techniques for Noncommutative Algebras and Tensor Categories
非交换代数和张量范畴的同调技术
- 批准号:
2001163 - 财政年份:2020
- 资助金额:
$ 11.35万 - 项目类别:
Standard Grant
Tensor Categories and Representations of Quantized Algebras
量化代数的张量范畴和表示
- 批准号:
2001318 - 财政年份:2020
- 资助金额:
$ 11.35万 - 项目类别:
Continuing Grant
Applications of Tensor Categories in Operator Algebras
张量范畴在算子代数中的应用
- 批准号:
2100531 - 财政年份:2020
- 资助金额:
$ 11.35万 - 项目类别:
Standard Grant
Study of algebraic methods for Morita dual of finite tensor categories and related algebraic structures
有限张量范畴Morita对偶的代数方法及相关代数结构研究
- 批准号:
20K03520 - 财政年份:2020
- 资助金额:
$ 11.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)