Georgia Algebraic Geometry Symposium

乔治亚代数几何研讨会

基本信息

  • 批准号:
    1902260
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-15 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

The Georgia Algebraic Geometry Symposium will be held at Emory University, in Atlanta in 2019, University of Georgia, in Athens in 2020, Georgia Tech, in Atlanta in 2021. The conferences will expose students, postdocs, and faculty to the latest and greatest in the field of Algebraic Geometry. The meetings will also help early career mathematicians from outside of Georgia to get to know the state and its universities. The annual event will help to significantly strengthen the ties between the members of the algebraic geometry community in Georgia and the neighboring states. The majority of funding will be used to support early career mathematicians. The organizers' goal is to provide an opportunity for them to network with each other and with senior people at the conference, and to be exposed to the cutting edge developments in the field. As has been demonstrated in the previous Georgia Algebraic Geometry Symposia, the organizers are committed to supporting members of the community from underrepresented groups. At each of the past events there was a significant percentage of female speakers. In addition to the talks by invited star speakers, there will be sessions of mini-talks by early career researchers: postdocs and graduate students. Since 2012 the Principal Investigators have been organizing an annual event called the Georgia Algebraic Geometry Symposium. The first three installments were held at the University of Georgia, and the last three were a collective effort, with conferences held at Emory University, at the University of Georgia, and at Georgia Tech, which together comprise the main three research universities in Georgia. Following a well working scheme, each conference will be held over a weekend with 8-10 speakers and 80-100 participants, of which about half will be local and the other half non-local.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
佐治亚代数几何研讨会将于 2019 年在亚特兰大埃默里大学、2020 年在雅典佐治亚大学、2021 年在亚特兰大佐治亚理工学院举行。这些会议将使学生、博士后和教师了解代数几何领域的最新和最先进的技术。这些会议还将帮助佐治亚州以外的早期职业数学家了解该州及其大学。这项一年一度的活动将有助于显着加强佐治亚州与邻国代数几何界成员之间的联系。大部分资金将用于支持早期职业数学家。组织者的目标是为他们提供一个在会议上相互交流以及与高级人士建立联系的机会,并了解该领域的前沿发展。正如之前的乔治亚代数几何研讨会所证明的那样,组织者致力于支持来自代表性不足群体的社区成员。在过去的每一次活动中,女性演讲者的比例都很高。除了受邀明星演讲者的演讲之外,还将举办由早期职业研究人员(博士后和研究生)举办的小型演讲。自 2012 年以来,首席研究员一直在组织名为“佐治亚代数几何研讨会”的年度活动。前三期在佐治亚大学举行,后三期是集体努力,会议在埃默里大学、佐治亚大学和佐治亚理工学院举行,这三所大学共同组成了佐治亚州主要的三所研究型大学。按照良好的运作计划,每次会议将在一个周末举行,有 8-10 名演讲者和 80-100 名参与者,其中大约一半将是本地人,另一半将是非本地人。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Parimala Raman其他文献

Parimala Raman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Parimala Raman', 18)}}的其他基金

Arithmetic of Homogeneous Spaces under Linear Algebraic Groups
线性代数群下齐次空间的算术
  • 批准号:
    1801951
  • 财政年份:
    2018
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
  • 批准号:
    1463882
  • 财政年份:
    2015
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
  • 批准号:
    1523466
  • 财政年份:
    2015
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Rational points on homogeneous spaces, quadractic forms and Brauer groups
齐次空间、二次型和布劳尔群上的有理点
  • 批准号:
    1401319
  • 财政年份:
    2014
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Linear algebraic groups and related topics in algebra
线性代数群和代数中的相关主题
  • 批准号:
    1201542
  • 财政年份:
    2012
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Arithmetic of algebraic groups over 2-dimensional fields
二维域上的代数群算术
  • 批准号:
    1001872
  • 财政年份:
    2010
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Study of homogeneous spaces under linear algebraic groups
线性代数群下齐次空间的研究
  • 批准号:
    0653382
  • 财政年份:
    2007
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
  • 批准号:
    2349244
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Algebraic Geometry and Strings
代数几何和弦
  • 批准号:
    2401422
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
  • 批准号:
    2412921
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
  • 批准号:
    EP/W014882/2
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Research Grant
Conference: AGNES Summer School in Algebraic Geometry
会议:AGNES 代数几何暑期学校
  • 批准号:
    2312088
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Conference: Higher dimensional algebraic geometry
会议:高维代数几何
  • 批准号:
    2327037
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
  • 批准号:
    2234736
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
  • 批准号:
    2301474
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了