Study of homogeneous spaces under linear algebraic groups
线性代数群下齐次空间的研究
基本信息
- 批准号:0653382
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let G be a connected linear algebraic group defined over a field F and X a homogeneous space under G. Our main goal is to study arithmetic properties of X like finiteness of R-equivalence classes, weak approximation and Hasse principle for X defined over a 2-dimensional field:- number fields and function fields of surfaces over real and algebraically closed fields are examples of this class of fields. In the case of number fields, the subject is well-understood, thanks to the results of Harder, Kneser, Borovoi, Sansuc, Colliot Th\`el\'ene, and others. The main impetus for the study in this generality came from a conjecture of Serre concerning the existence of rational points on principal homogeneous spaces under semisimple simply connected linear algebraic groups over fields of cohomological dimension 2. Thanks to a result of P. Gille, the conjecture for groups of type E_8 over function fields of surfaces over algebraically closed fields would follow if one proves cyclicity of prime degree division algebras over such function fields. Cyclicity of prime degree algebras is a wide open question for a general ground field. We propose to study the structure of division algebras over function fields of surfaces with a view to understanding cyclicity. While looking for rational points on principal homogeneous spaces, one comes across the weaker question of finding zero cycles of degree one. It is an open question whether the existence of zero cycles of degree one implies existence of rational points on principal homogeneous spaces.This question has an affirmative answer for number fields and we propose to investigate this question for a general field, with special reference to arithmetic like fields.The study of homogeneous spaces under linear algebraic groups encompasses the study of interesting algebraic structures--quadratic forms and involutorial division algebras which are associated to classical groups and Cayley and Albert algebras which are associated to exceptional groups. The study of these structures permeates through several areas of mathematics like Number Theory, Representation Theory and Algebraic Geometry. The study of quadratic forms--homogeneous polynomials of degree 2 --has a long and rich history. The classical theorem of Hasse-Minkowski reduces the existence of nontrivial zeros of such a polynomial to solutions of certain congruences modulo primes.Our objective is to study these algebraic structures over fields which share certain `cohomological properties' in common with number fields, for example, the function fields of surfaces over real or complex numbers. We propose to investigate arithmetic properties of algebraic structures like quadratic forms and involutorial division algebras over this class of fields where arithmetic techniques like class field theory and reciprocity laws are not available.
设G是定义在域F上的连通线性代数群,X是G下的齐次空间,我们的主要目的是研究二维域上定义的R-等价类的类X的有限性、弱逼近和Hasse原理的算术性质:-数域和实域和代数闭域上曲面的函数域。在数字字段的情况下,这个主题是很好理解的,这要归功于Harder、Knerer、Borovoi、Sansuc、Colliot Th‘El’ene和其他人的结果。这一一般性研究的主要推动力来自于Serre关于上同调维域上的半单单连通线性代数群在主齐性空间上存在有理点的猜想。由于P.Gille的一个结果,如果证明了这样的函数域上的素数次除代数的循环性,就可以得到代数闭域上曲面的函数域上的E_8型群的猜想。素数次代数的循环性在一般的基域中是一个广泛公开的问题。为了了解曲面的循环性,我们建议研究曲面函数域上的除法代数的结构。在寻找主齐性空间上的有理点时,人们遇到了一个较弱的问题,即寻找一次零循环。一次零圈的存在是否意味着主齐次空间上有理点的存在是一个悬而未决的问题。这个问题对于数域有一个肯定的答案,我们建议在一般域中研究这个问题,特别参考类算术域。线性代数群下的齐性空间的研究包括研究有趣的代数结构--与经典群相关的二次型和对合除法代数,以及与例外群相关的Cayley和Albert代数。对这些结构的研究渗透到数学的几个领域,如数论、表示论和代数几何。二次型--2次齐次多项式--的研究有着悠久而丰富的历史。Hasse-Minkowski的经典定理将这种多项式的非平凡零点的存在性归结为某些模素数同余的解,我们的目的是研究与数域相同的域上的这些代数结构,例如实数或复数上的曲面的函数域。我们建议在这类域上研究二次型和对合除代数等代数结构的算术性质,其中类场理论和互易定律等算术技巧是不可用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Parimala Raman其他文献
Parimala Raman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Parimala Raman', 18)}}的其他基金
Arithmetic of Homogeneous Spaces under Linear Algebraic Groups
线性代数群下齐次空间的算术
- 批准号:
1801951 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
- 批准号:
1463882 - 财政年份:2015
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Rational points on homogeneous spaces, quadractic forms and Brauer groups
齐次空间、二次型和布劳尔群上的有理点
- 批准号:
1401319 - 财政年份:2014
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Linear algebraic groups and related topics in algebra
线性代数群和代数中的相关主题
- 批准号:
1201542 - 财政年份:2012
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Arithmetic of algebraic groups over 2-dimensional fields
二维域上的代数群算术
- 批准号:
1001872 - 财政年份:2010
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
均相液相生物芯片检测系统的构建及其在癌症早期诊断上的应用
- 批准号:82372089
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
伽罗华环上重根常循环码的一些问题研究
- 批准号:11626077
- 批准年份:2016
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
代数的 Leading homogeneous (monomial) 代数及其应用研究
- 批准号:10971044
- 批准年份:2009
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Operations on equivariant oriented cohomology of homogeneous spaces
齐次空间的等变导向上同调的运算
- 批准号:
RGPIN-2022-03060 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Homogeneous spaces and dimension theory
齐次空间和维度理论
- 批准号:
RGPIN-2015-06200 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic and Uniform Diophantine Approximation Via Flows on Homogeneous Spaces
通过齐次空间上的流进行渐近一致丢番图逼近
- 批准号:
2155111 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Geometry and Analysis on Homogeneous Spaces
非交换几何与齐次空间分析
- 批准号:
2054725 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Homogeneous spaces and dimension theory
齐次空间和维度理论
- 批准号:
RGPIN-2015-06200 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Complex geometric structures and their moduli on Lie groups and homogeneous spaces
李群和齐次空间上的复杂几何结构及其模
- 批准号:
21K03248 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
harmonic analysis on homogeneous spaces and the method of coadjoint orbit
齐次空间的调和分析与共交轨道方法
- 批准号:
20K14325 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Surface group representations and geometry of negative curvature
负曲率的曲面组表示和几何
- 批准号:
20K03610 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)