Arithmetic of algebraic groups over 2-dimensional fields
二维域上的代数群算术
基本信息
- 批准号:1001872
- 负责人:
- 金额:$ 16.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For a connected linear algebraic group defined over field there has been considerable progress in recent years in the study of homogeneous spaces over function fields of curves over a p-adic field. It has been proved recently by Parimala and Suresh that every quadratic form in at least nine variables over the function field of a p-adic curve has a nontrivial zero. Further, patching techniques developed by Harbater-Hartmann-Krashen have provided tools to study certain local-global principle for existence of rational points on homogeneous spaces over such fields under the assumption that the algebraic group is rational. We propose to study homogeneous spaces under linear algebraic groups over function fields of curves over local and global fields. The study over function fields over global fields would have tremendous consequences and could lead to the fact that every quadratic form in large enough number of variables over function fields of curves over totally imaginary number fields has a nontrivial zero. We propose to study questions of Hasse principle for existence of rational points on homogeneous spaces under connected linear algebraic groups over such fields. In the context of simply connected groups, the Rost invariant for principal homogeneous spaces is a powerful tool to study these spaces. We propose to study obstruction to the injectivity of the Rost invariant for function fields of curves over local and global fields.The study of homogeneous spaces under linear algebraic groups includes study of several interesting algebraic objects like quadratic forms, central simple algebras, Octonian and Albert algebras. The study over number fields is enriched by class field theory techniques. A classical theorem of Hasse-Maass-Schiling for number fields is the following Hasse principle: an element in the number field is a reduced norm from a central simple algebra if and only if it is positive at all real completions where the division algebra is ramified. A similar criterion for reduced norms for 2-dimensional fields is a far-reaching extension of this classical result for number fields. We propose to replace class field theory by purely homological properties of these fields and the geometry of the associated arithmetic surfaces to study properties of homogeneous spaces in the general setting of function fields of curves over local and global fields.
对于域上的连通线性代数群,近年来关于p进域上曲线的函数域上的齐性空间的研究取得了很大的进展。Parimala和Suresh最近证明了p-adic曲线的函数域上的每一个至少九个变量的二次型都有一个非平凡的零点。此外,由Harbater-Hartmann-Krashen开发的修补技术提供了工具来研究某些局部-全局原理,这些原理在代数群是有理的假设下,在这样的域上的齐次空间上存在有理点。本文研究了局部域和整体域上曲线的函数域上线性代数群下的齐性空间。对整体域上函数域的研究将产生巨大的影响,并可能导致这样一个事实,即全虚数域上曲线的函数域上的每一个具有足够多变量的二次型都有一个非平凡的零。本文研究了齐性空间上连通线性代数群下有理点存在的Hasse原理问题。在单连通群的背景下,主齐性空间的Rost不变量是研究这类空间的有力工具。我们提出研究局部域和整体域上曲线的函数域的Rost不变量的内射性的障碍.线性代数群下的齐性空间的研究包括研究几个有趣的代数对象,如二次型,中心单代数,Octonian和Albert代数。类场论技术丰富了数域的研究。哈塞-马斯-席林关于数域的一个经典定理是以下哈塞原理:数域中的元素是中心单代数的约化范数当且仅当它在除代数是分歧的所有真实的完备化处都是正的。二维域的约化范数的一个类似的准则是数域的这一经典结果的一个意义深远的推广。我们建议取代类场理论的纯同调性质的这些领域和几何的相关算术表面研究性质的齐次空间的一般设置的函数场的曲线在当地和全球的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Parimala Raman其他文献
Parimala Raman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Parimala Raman', 18)}}的其他基金
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
- 批准号:
1902260 - 财政年份:2019
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Arithmetic of Homogeneous Spaces under Linear Algebraic Groups
线性代数群下齐次空间的算术
- 批准号:
1801951 - 财政年份:2018
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
- 批准号:
1463882 - 财政年份:2015
- 资助金额:
$ 16.26万 - 项目类别:
Continuing Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
- 批准号:
1523466 - 财政年份:2015
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Rational points on homogeneous spaces, quadractic forms and Brauer groups
齐次空间、二次型和布劳尔群上的有理点
- 批准号:
1401319 - 财政年份:2014
- 资助金额:
$ 16.26万 - 项目类别:
Continuing Grant
Linear algebraic groups and related topics in algebra
线性代数群和代数中的相关主题
- 批准号:
1201542 - 财政年份:2012
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Study of homogeneous spaces under linear algebraic groups
线性代数群下齐次空间的研究
- 批准号:
0653382 - 财政年份:2007
- 资助金额:
$ 16.26万 - 项目类别:
Continuing Grant
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Arithmetic Questions in the Theory of Linear Algebraic Groups
线性代数群理论中的算术问题
- 批准号:
2154408 - 财政年份:2022
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Arithmetic of Homogeneous Spaces under Linear Algebraic Groups
线性代数群下齐次空间的算术
- 批准号:
1801951 - 财政年份:2018
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Arithmetic of hyperbolic algebraic curves related to arithmetic fundamental groups
与算术基本群相关的双曲代数曲线的算术
- 批准号:
15K04780 - 财政年份:2015
- 资助金额:
$ 16.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic groups, arithmetic subgroups and geometry
代数群、算术子群和几何
- 批准号:
1401380 - 财政年份:2014
- 资助金额:
$ 16.26万 - 项目类别:
Continuing Grant
Arithmetic and Zariski-dense subgroups in algebraic groups
代数群中的算术和 Zariski 密集子群
- 批准号:
1301800 - 财政年份:2013
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Milnor type K-group attached to algebraic groups and arithmetic geometry
附属于代数群和算术几何的 Milnor 型 K 群
- 批准号:
25800019 - 财政年份:2013
- 资助金额:
$ 16.26万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Relationship between the geometric properties of hyperbolic algebraic curves and the group-theoretic properties of the arithmetic fundamental groups of curves
双曲代数曲线的几何性质与算术基本曲线群的群论性质之间的关系
- 批准号:
24540016 - 财政年份:2012
- 资助金额:
$ 16.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic Groups, Arithmetic Groups and Locally Symmetric Spaces
代数群、算术群和局部对称空间
- 批准号:
1001748 - 财政年份:2010
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
On automorphic forms on algebraic groups: Arithmetic invariants and automorphic L-functions
关于代数群的自同构:算术不变量和自同构 L 函数
- 批准号:
20540031 - 财政年份:2008
- 资助金额:
$ 16.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)