Rational points on homogeneous spaces, quadractic forms and Brauer groups
齐次空间、二次型和布劳尔群上的有理点
基本信息
- 批准号:1401319
- 负责人:
- 金额:$ 24.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The interplay between finding solutions to sets of equations and questions in geometry has been very fruitful in Mathematics. The PI's research fits into this way of thinking about both topics. The study of linear algebraic groups and homogeneous spaces provides a unified plank to understanding distinct interesting objects in algebra, geometry and number theory. Extending the classical study over number fields, for example the rational numbers, to function fields, which includes the class of simple functions such as polynomials, which is part of the PI's proposal,is useful from the geometric perspective. Engaging graduate students on topics related to algebraic groups and homogeneous spaces, an area ripe with questions accessible to students, via seminars and workshops, will be part of the activities of the PI during this project execution.The study of quadratic forms and their zeros over function fields over number fields and p-adic fields is an example of the objects studied during this proposal period. The PI plans to investigate questions related to the study of homogeneous spaces with special reference to quadratic forms and Brauer groups. The PI shall study the period-index questions for the Brauer group of function fields of curves over number fields with a view to bounding the u-invariant of such fields. It is an open question whether quadratic forms in sufficiently many variables over function fields of curves over totally imaginary number fields have a nontrivial zero with conditional results dependent on the Hasse principle for twisted moduli spaces over curves over number fields; the PI will investigate the obstruction to the Hasse principle for such spaces. Higher reciprocity obstructions using the Bloch-Ogus theory will be used to study the existence of rational points on homogeneous spaces over function fields. The PI also proposes to study G-trace forms, via construction of invariants, towards answering realisability questions.
求解方程组和几何问题之间的相互作用在数学中是非常富有成效的。PI的研究符合对这两个主题的思考方式。线性代数群和齐次空间的研究为理解代数、几何和数论中不同的有趣对象提供了一个统一的平台。 将经典的研究扩展到数域,例如有理数,函数域,包括简单函数类,例如多项式,这是PI提案的一部分,从几何角度来看是有用的。 在本项目执行期间,PI将通过研讨会和讲习班,让研究生参与与代数群和齐次空间相关的主题,这是一个学生可以通过研讨会和讲习班获得的问题成熟的领域。在数域和p-adic域上的函数域上的二次型及其零点的研究是本项目期间研究对象的一个例子。PI计划研究与齐次空间研究有关的问题,特别是二次型和布劳尔群。PI将研究数域上曲线的函数域的Brauer群的周期指数问题,以期界定这些域的u-不变量。这是一个悬而未决的问题是否有足够多的变量二次型函数域的曲线在全虚数域有一个非平凡的零与条件的结果依赖于哈塞原则扭曲模空间的曲线在数域; PI将调查的障碍哈塞原则为这样的空间。使用布洛赫-奥格斯理论的高互易障碍将被用来研究函数域上齐次空间上有理点的存在性。PI还建议通过构造不变量来研究G-迹形式,以回答可实现性问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Parimala Raman其他文献
Parimala Raman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Parimala Raman', 18)}}的其他基金
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
- 批准号:
1902260 - 财政年份:2019
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
Arithmetic of Homogeneous Spaces under Linear Algebraic Groups
线性代数群下齐次空间的算术
- 批准号:
1801951 - 财政年份:2018
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
- 批准号:
1463882 - 财政年份:2015
- 资助金额:
$ 24.61万 - 项目类别:
Continuing Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
- 批准号:
1523466 - 财政年份:2015
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
Linear algebraic groups and related topics in algebra
线性代数群和代数中的相关主题
- 批准号:
1201542 - 财政年份:2012
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
Arithmetic of algebraic groups over 2-dimensional fields
二维域上的代数群算术
- 批准号:
1001872 - 财政年份:2010
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
Study of homogeneous spaces under linear algebraic groups
线性代数群下齐次空间的研究
- 批准号:
0653382 - 财政年份:2007
- 资助金额:
$ 24.61万 - 项目类别:
Continuing Grant
相似国自然基金
光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
- 批准号:11674247
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
用多重假设检验方法来研究方差变点问题
- 批准号:10901010
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multidisciplinary analysis of financial reference points and wellbeing
财务参考点和福祉的多学科分析
- 批准号:
DP240101927 - 财政年份:2024
- 资助金额:
$ 24.61万 - 项目类别:
Discovery Projects
Chimella application for Sap points accreditation
Chimella 申请 Sap 积分认证
- 批准号:
10106576 - 财政年份:2024
- 资助金额:
$ 24.61万 - 项目类别:
Collaborative R&D
Exploring Tipping Points and Their Impacts Using Earth System Models (TipESM)
使用地球系统模型探索临界点及其影响 (TipESM)
- 批准号:
10090271 - 财政年份:2024
- 资助金额:
$ 24.61万 - 项目类别:
EU-Funded
Exceptional Points Enhanced Acoustic Sensing of Biological Cells
特殊点增强生物细胞的声学传感
- 批准号:
2328407 - 财政年份:2024
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
TipESM: Exploring Tipping Points and Their Impacts Using Earth System Models
TipESM:使用地球系统模型探索临界点及其影响
- 批准号:
10103098 - 财政年份:2024
- 资助金额:
$ 24.61万 - 项目类别:
EU-Funded
Climate Tipping Points: Uncertainty-aware quantification of Earth system tipping potential from observations and models and assessment of associated climatic, ecological, and socioeconomic impacts
气候临界点:通过观测和模型以及对相关气候、生态和社会经济影响的评估,对地球系统潜在的不确定性进行量化
- 批准号:
10090795 - 财政年份:2024
- 资助金额:
$ 24.61万 - 项目类别:
EU-Funded
Social Tipping Points and Norm Change in Large-scale Laboratory Experiments
大规模实验室实验中的社会临界点和规范变化
- 批准号:
2242443 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
Development of a novel therapeutic drug targeting both MDM4 and PKC, critical points in uveal malignant melanoma
开发针对葡萄膜恶性黑色素瘤关键点 MDM4 和 PKC 的新型治疗药物
- 批准号:
23K09020 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optic: A solution to Events Related Terrorism and Event Security Pain Points
Optic:事件相关恐怖主义和事件安全痛点的解决方案
- 批准号:
10084791 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别:
Collaborative R&D
Generative Mapping and Control of Stationary Points in Complex Dynamical Systems
复杂动力系统中驻点的生成映射和控制
- 批准号:
EP/X018288/1 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别:
Research Grant














{{item.name}}会员




