Collaborative Research: Atomic-Scale Hybrids, Tuning the IR Dielectric Function through Superlattice Design
合作研究:原子级混合体,通过超晶格设计调节红外介电函数
基本信息
- 批准号:1905295
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Description: The infrared spectral range offers a wealth of technological opportunities, including thermal imaging, ability to see through dust or clouds, chemical identification for medical diagnostics and hazard identification, to name a few. Unlike the visible spectral range where materials such as glass provide exceptionally high performance at extremely low cost, the infrared optical components are typically sensitive to water, opaque in the visible, expensive and/or brittle. Thus, identifying alternative materials or material platforms that can provide the basis of next generation infrared optics and light sources is highly desired. Within the infrared, many polar materials, such as silicon carbide, exhibit crystal vibrations that can be excited using light. This provides opportunities to compress long-wavelength infrared light to nanometer scale lengths, offering the potential to significantly reduce the size of infrared optics. However, these crystal vibrations are material specific and thus, finding the right material in the desired infrared frequency range is challenging. This project investigates novel hybrid materials composed of altering stacking thin layers with potential to modify their crystal vibrations in an effort to change its corresponding infrared properties. The collaborative research seeks to understand how these vibrations are influenced when the layer thickness is reduced to atom-scale thicknesses, and involves a multidisciplinary team of a material scientist, physicist and mechanical engineer to aid in realizing designer infrared materials deemed 'crystalline hybrids'. The project trains graduate and undergraduate students in semiconductor growth, infrared spectroscopy and characterization and theoretical descriptions of complex solids.Technical Description: This project seeks to develop a new class of materials called Crystalline Hybrids (XHs) that offers the promise for realizing user-defined infrared (IR) optical materials. These novel materials can serve as the basis of next generation IR optical components, sources and detector elements. A primary research goal of this collaborative program is to discover theory-guided principles for the rational design of XHs to meet a given application space. The XH approach seeks to modify polar optic phonons within atomically thin layers comprising a multilayered superlattice. Within these structures, the layer thicknesses will be less than the phonon mean-free-path, resulting in quantum confinement and frequency tuning of the vibrational state. Furthermore, the modified bonding at the multiple interfaces within the superlattice structures introduce new interfacial phonons. These modified phonon properties directly influence the infrared response of the material, as it is optic phonons that dominate the IR behavior of polar crystals. The research is focused on superlattices comprised of the near-lattice matched III-V semiconductors InAs, GaSb and AlSb, which eliminate external effects like strain and allow well-controlled experiments to be performed. The project involves a diverse group of graduate and undergraduate students who are trained in the basics of semiconductor growth, IR spectroscopy, theory and first-principles calculations of nanomaterials, enabling them to work at the frontiers of nanophotonics research. The collaboration between material scientists, physicists and engineers broadens the impact of this work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:红外光谱范围提供了丰富的技术机会,包括热成像,穿透灰尘或云层的能力,用于医疗诊断和危险识别的化学识别,仅举几例。与其中诸如玻璃的材料以极低的成本提供特别高的性能的可见光谱范围不同,红外光学部件通常对水敏感、在可见光中不透明、昂贵和/或易碎。因此,非常需要识别可以提供下一代红外光学器件和光源的基础的替代材料或材料平台。在红外线内,许多极性材料,如碳化硅,表现出可以用光激发的晶体振动。这提供了将长波长红外光压缩到纳米级长度的机会,从而有可能显著减小红外光学器件的尺寸。然而,这些晶体振动是材料特定的,因此,在所需的红外频率范围内找到合适的材料是具有挑战性的。该项目研究了由改变堆叠薄层组成的新型混合材料,这些薄层具有改变其晶体振动的潜力,以改变其相应的红外特性。这项合作研究旨在了解当层厚度减少到原子级厚度时,这些振动是如何受到影响的,并涉及材料科学家,物理学家和机械工程师的多学科团队,以帮助实现被认为是“结晶混合物”的设计师红外材料。该项目培养研究生和本科生的半导体生长,红外光谱和表征以及复杂固体的理论描述。技术说明:该项目旨在开发一种称为晶体混合物(XHs)的新材料,为实现用户定义的红外(IR)光学材料提供希望。这些新材料可以作为下一代红外光学元件、光源和探测器元件的基础。这个合作计划的主要研究目标是发现理论指导的原则,合理设计的XHS,以满足给定的应用空间。XH方法试图修改包括多层超晶格的原子薄层内的极性光学声子。在这些结构中,层厚度将小于声子平均自由程,导致振动态的量子限制和频率调谐。此外,在超晶格结构内的多个界面处的改性成键引入了新的界面声子。这些修改后的声子性质直接影响材料的红外响应,因为它是光学声子,占主导地位的极性晶体的IR行为。该研究的重点是由近晶格匹配的III-V族半导体InAs,GaSb和AlSb组成的超晶格,它消除了应变等外部影响,并允许进行良好的控制实验。该项目涉及研究生和本科生谁是在半导体生长,红外光谱学,理论和纳米材料的第一原理计算的基础培训,使他们能够在纳米光子学研究的前沿工作的多元化群体。材料科学家、物理学家和工程师之间的合作扩大了这项工作的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prineha Narang其他文献
Observation of the axion quasiparticle in 2D MnBi2Te4
二维 MnBi2Te4 中轴子准粒子的观测
- DOI:
10.1038/s41586-025-08862-x - 发表时间:
2025-04-16 - 期刊:
- 影响因子:48.500
- 作者:
Jian-Xiang Qiu;Barun Ghosh;Jan Schütte-Engel;Tiema Qian;Michael Smith;Yueh-Ting Yao;Junyeong Ahn;Yu-Fei Liu;Anyuan Gao;Christian Tzschaschel;Houchen Li;Ioannis Petrides;Damien Bérubé;Thao Dinh;Tianye Huang;Olivia Liebman;Emily M. Been;Joanna M. Blawat;Kenji Watanabe;Takashi Taniguchi;Kin Chung Fong;Hsin Lin;Peter P. Orth;Prineha Narang;Claudia Felser;Tay-Rong Chang;Ross McDonald;Robert J. McQueeney;Arun Bansil;Ivar Martin;Ni Ni;Qiong Ma;David J. E. Marsh;Ashvin Vishwanath;Su-Yang Xu - 通讯作者:
Su-Yang Xu
Off balance and over the edge
失去平衡并越过边缘
- DOI:
10.1038/s41565-020-00815-x - 发表时间:
2020-11-16 - 期刊:
- 影响因子:34.900
- 作者:
Christopher J. Ciccarino;Prineha Narang - 通讯作者:
Prineha Narang
Shaken not strained
摇匀而不是用力摇晃
- DOI:
10.1038/s41567-020-0937-2 - 发表时间:
2020-06-22 - 期刊:
- 影响因子:18.400
- 作者:
Dominik M. Juraschek;Prineha Narang - 通讯作者:
Prineha Narang
Axion physics in condensed-matter systems
凝聚态系统中的轴子物理
- DOI:
10.1038/s42254-020-0240-2 - 发表时间:
2020-09-30 - 期刊:
- 影响因子:39.500
- 作者:
Dennis M. Nenno;Christina A. C. Garcia;Johannes Gooth;Claudia Felser;Prineha Narang - 通讯作者:
Prineha Narang
Prineha Narang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prineha Narang', 18)}}的其他基金
NSF Convergence Accelerator Track L: Portable Quantum-enhanced Sensing and Species Identification of Bioaerosols
NSF 融合加速器轨道 L:生物气溶胶的便携式量子增强传感和物种识别
- 批准号:
2344350 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
RAISE-QAC-QSA: Open Quantum Systems on Noisy Intermediate-Scale Quantum Devices
RAISE-QAC-QSA:噪声中等规模量子设备上的开放量子系统
- 批准号:
2331441 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
- 批准号:
2246394 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
- 批准号:
2247007 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
- 批准号:
2106887 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
RAISE-QAC-QSA: Open Quantum Systems on Noisy Intermediate-Scale Quantum Devices
RAISE-QAC-QSA:噪声中等规模量子设备上的开放量子系统
- 批准号:
2037783 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
- 批准号:
1944085 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2425965 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
- 批准号:
2225900 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304852 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304854 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304853 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
- 批准号:
2225896 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Elucidation of the Role of Atomic Structures of CeO2(111) on the Nucleation and Growth of Metal Clusters through in situ STM and Theory
合作研究:通过原位STM和理论阐明CeO2(111)原子结构对金属团簇成核和生长的作用
- 批准号:
2204075 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Elucidation of the Role of Atomic Structures of CeO2(111) on the Nucleation and Growth of Metal Clusters through in situ STM and Theory
合作研究:通过原位STM和理论阐明CeO2(111)原子结构对金属团簇成核和生长的作用
- 批准号:
2204074 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Compositional and Atomic-Scale Ordering Effects on Aqueous Passivation of Binary BCC and FCC Alloys
合作研究:二元 BCC 和 FCC 合金水相钝化的成分和原子尺度有序效应
- 批准号:
2208865 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Compositional and Atomic-Scale Ordering Effects on Aqueous Passivation of Binary BCC and FCC Alloys
合作研究:二元 BCC 和 FCC 合金水相钝化的成分和原子尺度有序效应
- 批准号:
2208848 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant