RAISE-QAC-QSA: Open Quantum Systems on Noisy Intermediate-Scale Quantum Devices
RAISE-QAC-QSA:噪声中等规模量子设备上的开放量子系统
基本信息
- 批准号:2331441
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Summary: Open quantum systems are ubiquitous in chemistry, physics, and materials science, from photosynthetic light-harvesting chromophores and catalytic centers to quantum defects in solid-state materials. More generally, open quantum systems provide a framework to consider the structure and dynamics of a system that has significant interactions with its environment. Despite the fundamental and technological importance of open systems, classical approaches remain computationally limited. Catalyzed by recent discoveries in quantum computation, the team proposes to use quantum resources (noisy intermediate-scale quantum, or NISQ, devices) to describe open quantum systems. A new quantum algorithm for such open systems, one that scales favorably on quantum devices, would be transformative beyond the quantum-information community. In the larger context of quantum simulation, accurate and efficient computation of molecules and materials is one of the most important outstanding problems in science and engineering. The advent of quantum computing raises new possibilities for eliminating the exponential complexity that has stymied simulation of strongly correlated and open quantum systems on high-performance classical computers. The proposed quantum algorithm will leverage the power of quantum computing to solve a class of physically-relevant problems and overcome inherent limitations of the exponential scaling of many-electron quantum theory in classical approaches. To advance quantum information science and technology, this program will pursue parallel approaches to broader impact: (i) Education, with a Quantum Computing for Open Quantum Systems course and online-module across Harvard and University of Chicago. This course would leverage access to small-scale quantum devices. PI Narang has already incorporated such ideas into an undergraduate course with devices at IBM; (ii) Outreach Programs emphasizing recruitment and inclusion of underrepresented groups in STEM to the field of Quantum Algorithms via connections with Boston's Museum of Science; and (iii) a close engagement with industry partners and startups in the area of quantum information for chemistry and physics.Technical Summary: The PIs propose a dedicated and multidisciplinary RAISE program between quantum chemistry, theoretical computer science, and computational condensed matter physics in the context of NSF's Quantum Algorithm Challenge. A new quantum algorithm for such open systems, one that scales favorably on quantum devices, would be transformative beyond the quantum-computing community. The team notes the timeliness of the proposed approach: as recently as 2019, researchers at Google and NASA presented heuristic benchmarking showing that their 54-qubit superconducting circuit quantum computer performs certain sampling algorithms much faster than classical computers, even though these algorithms have no known practical application. This advance sparked the research for practical quantum algorithms that solve relevant problems in chemistry and physics on near-term devices. The proposed quantum algorithm will leverage the power of quantum computation to solve a class of physically-relevant problems and overcome inherent limitations of the exponential scaling of many-electron quantum theory in classical approaches. The proposed effort will be organized in the following closely connected, interdisciplinary Thrusts: 1) Accelerated quantum algorithms for Non-Markovian dynamics with the ensemble-of-Lindbladian-trajectories (ELT) method on NISQ devices, and 2) Demonstration of the quantum ELT algorithm to capture non-trivial electron and nuclear dynamics in strongly correlated condensed-phase systems with non-exponential scaling. For weakly coupled Markovian systems, the Lindblad formalism gives an efficient and accurate depiction of the dynamics, though it places severe constraints on the size of the system. This program will build on the ELT method with the quantum algorithm retaining significant advantages of its classical counterpart, including an exact treatment of non-Markovian dynamics and complete positivity of the density matrices. Multidisciplinary discoveries and methods from the PIs spanning computational and condensed matter physics, theoretical chemistry, and theoretical quantum information are essential to the vision and goals of this program, well-suited for the NSF RAISE program mandate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结:开放量子系统在化学、物理学和材料科学中无处不在,从光合捕光发色团和催化中心到固态材料中的量子缺陷。更一般地说,开放量子系统提供了一个框架来考虑与环境具有显着相互作用的系统的结构和动力学。尽管开放系统的基础和技术的重要性,经典的方法仍然计算有限。在量子计算的最新发现的催化下,该团队提出使用量子资源(嘈杂的中间尺度量子或NISQ设备)来描述开放的量子系统。一种适用于这种开放系统的新量子算法,一种在量子设备上具有良好扩展性的算法,将超越量子信息社区。在量子模拟的大背景下,分子和材料的精确和高效计算是科学和工程中最重要的突出问题之一。量子计算的出现为消除指数复杂性提供了新的可能性,这种复杂性阻碍了在高性能经典计算机上模拟强相关和开放的量子系统。所提出的量子算法将利用量子计算的力量来解决一类物理相关的问题,并克服经典方法中多电子量子理论指数标度的固有局限性。为了推进量子信息科学和技术,该计划将采取并行方法以产生更广泛的影响:(i)教育,开放量子系统的量子计算课程和哈佛和芝加哥大学的在线模块。本课程将利用小规模量子设备的访问。PI Narang已经将这些想法纳入了IBM的本科课程中;(ii)通过与波士顿科学博物馆的联系,强调招募和纳入STEM中代表性不足的群体到量子算法领域的外联计划;(iii)与化学和物理量子信息领域的行业合作伙伴和初创公司密切合作。技术摘要:PI在NSF量子算法挑战赛的背景下提出了量子化学,理论计算机科学和计算凝聚态物理之间的专用和多学科RAISE计划。一种适用于这种开放系统的新量子算法,一种在量子设备上具有良好扩展性的算法,将超越量子计算社区。该团队注意到所提出的方法的及时性:就在2019年,谷歌和NASA的研究人员提出了启发式基准测试,表明他们的54量子位超导电路量子计算机执行某些采样算法的速度比经典计算机快得多,尽管这些算法没有已知的实际应用。这一进展引发了对实用量子算法的研究,这些算法可以在近期设备上解决化学和物理学中的相关问题。所提出的量子算法将利用量子计算的力量来解决一类物理相关的问题,并克服经典方法中多电子量子理论的指数标度的固有局限性。拟议的努力将组织在以下紧密相连的,跨学科的推力:1)加速量子算法的非马尔可夫动力学与整体的Lindbladian轨迹(ELT)方法在NISQ设备,和2)量子ELT算法的演示捕获非平凡的电子和核动力学在强关联凝聚相系统与非指数标度。对于弱耦合马尔可夫系统,Lindblad形式主义给出了一个有效和准确的描述的动态,虽然它的地方严格限制系统的大小。该程序将建立在ELT方法的基础上,量子算法保留了经典算法的显著优点,包括非马尔可夫动力学的精确处理和密度矩阵的完全正性。从PI跨计算和凝聚态物理,理论化学和理论量子信息的多学科发现和方法是必不可少的愿景和目标,这个计划,非常适合NSF的RAISE计划的任务。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prineha Narang其他文献
Observation of the axion quasiparticle in 2D MnBi2Te4
二维 MnBi2Te4 中轴子准粒子的观测
- DOI:
10.1038/s41586-025-08862-x - 发表时间:
2025-04-16 - 期刊:
- 影响因子:48.500
- 作者:
Jian-Xiang Qiu;Barun Ghosh;Jan Schütte-Engel;Tiema Qian;Michael Smith;Yueh-Ting Yao;Junyeong Ahn;Yu-Fei Liu;Anyuan Gao;Christian Tzschaschel;Houchen Li;Ioannis Petrides;Damien Bérubé;Thao Dinh;Tianye Huang;Olivia Liebman;Emily M. Been;Joanna M. Blawat;Kenji Watanabe;Takashi Taniguchi;Kin Chung Fong;Hsin Lin;Peter P. Orth;Prineha Narang;Claudia Felser;Tay-Rong Chang;Ross McDonald;Robert J. McQueeney;Arun Bansil;Ivar Martin;Ni Ni;Qiong Ma;David J. E. Marsh;Ashvin Vishwanath;Su-Yang Xu - 通讯作者:
Su-Yang Xu
Off balance and over the edge
失去平衡并越过边缘
- DOI:
10.1038/s41565-020-00815-x - 发表时间:
2020-11-16 - 期刊:
- 影响因子:34.900
- 作者:
Christopher J. Ciccarino;Prineha Narang - 通讯作者:
Prineha Narang
Axion physics in condensed-matter systems
凝聚态系统中的轴子物理
- DOI:
10.1038/s42254-020-0240-2 - 发表时间:
2020-09-30 - 期刊:
- 影响因子:39.500
- 作者:
Dennis M. Nenno;Christina A. C. Garcia;Johannes Gooth;Claudia Felser;Prineha Narang - 通讯作者:
Prineha Narang
Shaken not strained
摇匀而不是用力摇晃
- DOI:
10.1038/s41567-020-0937-2 - 发表时间:
2020-06-22 - 期刊:
- 影响因子:18.400
- 作者:
Dominik M. Juraschek;Prineha Narang - 通讯作者:
Prineha Narang
Prineha Narang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prineha Narang', 18)}}的其他基金
NSF Convergence Accelerator Track L: Portable Quantum-enhanced Sensing and Species Identification of Bioaerosols
NSF 融合加速器轨道 L:生物气溶胶的便携式量子增强传感和物种识别
- 批准号:
2344350 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
- 批准号:
2246394 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
- 批准号:
2247007 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
- 批准号:
2106887 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
RAISE-QAC-QSA: Open Quantum Systems on Noisy Intermediate-Scale Quantum Devices
RAISE-QAC-QSA:噪声中等规模量子设备上的开放量子系统
- 批准号:
2037783 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
- 批准号:
1944085 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: Atomic-Scale Hybrids, Tuning the IR Dielectric Function through Superlattice Design
合作研究:原子级混合体,通过超晶格设计调节红外介电函数
- 批准号:
1905295 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
基于细菌接触损伤与应激诱导的QAC/PVDF膜抗生物污染机制与调控
- 批准号:51808395
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
- 批准号:
2337930 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
- 批准号:
2038011 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER‐QAC‐QSA: Quantum Chemistry with Mean-field Cost from Semidefinite Programming on Quantum Computing Devices
EAGER – QAC – QSA:量子计算设备上半定编程的具有平均场成本的量子化学
- 批准号:
2035876 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RAISE-QAC-QSA: Open Quantum Systems on Noisy Intermediate-Scale Quantum Devices
RAISE-QAC-QSA:噪声中等规模量子设备上的开放量子系统
- 批准号:
2037783 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Variational quantum algorithms for transcorrelated electronic-structure Hamiltonians
EAGER-QAC-QSA:互相关电子结构哈密顿量的变分量子算法
- 批准号:
2037832 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Bifurcation-Enabled Efficient Preparation of Many-body Ground States
EAGER-QAC-QSA:分叉有效制备多体基态
- 批准号:
2037987 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
- 批准号:
2037996 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: QAC-QSA: Resource Reduction in Quantum Computational Chemistry Mapping by Optimizing Orbital Basis Sets
EAGER:QAC-QSA:通过优化轨道基集减少量子计算化学绘图中的资源
- 批准号:
2037263 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Variational Quantum Algorithms for Nonequilibrium Quantum Many-Body Systems
EAGER-QAC-QSA:非平衡量子多体系统的变分量子算法
- 批准号:
2038010 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: QAC-QSA: Hamiltonian Reconstruction for Ansatz Selection and Validation of the Variational Quantum Eigensolver
EAGER:QAC-QSA:用于变分量子本征求解器 Ansatz 选择和验证的哈密顿重建
- 批准号:
2038027 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant