Hyperbolic-Parabolic Balance Laws with Applications

双曲-抛物线平衡定律及其应用

基本信息

  • 批准号:
    1908195
  • 负责人:
  • 金额:
    $ 15.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This project aims to study a general system of partial differential equations called hyperbolic-parabolic balance laws, with two specific applications in mind: one in bio-medicine and another in gas dynamics. There is a variety of gas-dynamic phenomena that can be described mathematically by hyperbolic-parabolic balance laws. The swirl of complicated gas flows surrounding a space vehicle reentering the Earth's atmosphere is probably one of the most spectacular examples for which these balance laws serve as a (simplified) mathematical description. The second application motivating this research is chemotaxis, the movement of micro-organisms in response to a chemical stimulus. The mechanism of chemotaxis is ubiquitous in biology and medicine, from migration of bacteria or leukocytes to cancer metastasis. Arising from the physical world, the parabolic-hyperbolic systems do not fit exactly into the traditional classification in the theory of partial different equations, and the solutions' behavior is governed by both hyperbolicity and parabolicity, plus a chemical reaction. Integrated into the research activities of the project there is an educational component. It includes curriculum development of hand-on modeling of real-world problems by partial differential equations, one-on-one research mentorship to undergraduate students, and direct participation of research by Ph.D. students. The project encourages the participation of students at all levels, especially students from under-represented groups.The project has two principal mathematical objectives. The first objective is to study the stability of equilibrium solutions. This is to understand how an initial perturbation, such as inaccuracy in measurement, propagates into the solution. The project team is particularly interested in the wave pattern formed by perturbation at long time. The research unifies the theories on hyperbolic balance laws and hyperbolic-parabolic conservation laws in this regard. It has direct application to gas flows in translational and vibrational non-equilibrium. The second objective is to study another model system, Keller-Segel-Fisher/KPP system, beyond the application of the above general theory. It is a chemotaxis model that has logarithmic sensitivity and logistic growth. Here the logarithmic sensitivity is to account for Fechner's law: Subjective sensation is proportional to the logarithm of the stimulus intensity. An important practical problem is what happens if the chemical signal is near void at one end of the domain. This is equivalent to the logarithmic function is near its singular point. In the project, we carry out an in-depth investigation into such a situation. The goals are existence of solution global in time, large time behavior, and possibly large data solutions or strong wave solutions.This project is jointly funded by the Applied Mathematics Program of the Division of Mathematical Sciences and by the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在研究称为双曲抛物平衡定律的偏微分方程的一般系统,并考虑到两个具体应用:一个在生物医学中,另一个在气体动力学中。有许多气体动力学现象可以用双曲-抛物平衡定律来描述。围绕着重返地球大气层的航天器的复杂气流的漩涡可能是这些平衡定律作为(简化的)数学描述的最壮观的例子之一。促使这项研究的第二个应用是趋化性,即微生物对化学刺激的反应。趋化性的机制在生物学和医学中是普遍存在的,从细菌或白细胞的迁移到癌症转移。抛物-双曲方程组起源于物理世界,不完全符合偏微分方程理论中的传统分类,其解的行为受双曲性和抛物性以及化学反应的共同控制。在该项目的研究活动中,有一个教育部分。它包括通过偏微分方程对现实世界问题进行动手建模的课程开发,对本科生进行一对一的研究指导,以及博士直接参与研究。学生该项目鼓励各级学生,特别是代表性不足群体的学生参与,该项目有两个主要数学目标。第一个目标是研究平衡解的稳定性。这是为了理解初始扰动(例如测量不准确)如何传播到解中。项目组对长时间扰动形成的波型特别感兴趣。该研究统一了双曲平衡律和双曲-抛物守恒律在这方面的理论。它直接应用于气体流动的平移和振动的非平衡。第二个目标是研究另一个模型系统,Keller-Segel-Fisher/KPP系统,超越了上述一般理论的应用。这是一个具有对数灵敏度和逻辑增长的趋化性模型。这里对数灵敏度是为了解释费希纳定律:主观感觉与刺激强度的对数成正比。一个重要的实际问题是,如果化学信号在畴的一端接近空洞,会发生什么。这等价于对数函数在其奇点附近。在项目中,我们对这种情况进行了深入调查。目标是解的存在性,时间上的全局性,大时间行为,该项目由数学科学部应用数学计划和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估被认为值得支持。影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Time Decay Rates for a Chemotaxis Model with Logarithmic Sensitivity
Corrigendum to “Optimal decay rates for a chemotaxis model with logistic growth, logarithmic sensitivity and density-dependent production/consumption rate” [J. Differential Equations (2020) 1379–1411]
对“具有逻辑增长、对数敏感性和密度依赖的生产/消耗率的趋化模型的最佳衰减率”的勘误[J.
Convergence to a diffusive contact wave for solutions to a system of hyperbolic balance laws
Asymptotic behavior of solutions to a chemotaxis-logistic model with transitional end-states
  • DOI:
    10.1016/j.jde.2022.07.013
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Yanni Zeng;Kun Zhao
  • 通讯作者:
    Yanni Zeng;Kun Zhao
Lp time asymptotic decay for general hyperbolic–parabolic balance laws with applications
一般双曲-抛物线平衡定律的 Lp 时间渐近衰减及其应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanni Zeng其他文献

Recent results for the logarithmic Keller-Segel-Fisher/KPP System
对数 Keller-Segel-Fisher/KPP 系统的最新结果
Gas Flows with Several Thermal Nonequilibrium Modes
GLOBAL EXISTENCE THEORY FOR A GENERAL CLASS OF HYPERBOLIC BALANCE LAWS
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanni Zeng
  • 通讯作者:
    Yanni Zeng
Global stability of a system of viscous balance laws arising from chemotaxis with dynamic boundary flux
具有动态边界通量的趋化作用产生的粘性平衡律系统的全局稳定性
  • DOI:
    10.1016/j.jde.2024.10.037
  • 发表时间:
    2025-01-25
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Yanni Zeng;Kun Zhao
  • 通讯作者:
    Kun Zhao
Asymptotic behavior of solutions to general hyperbolic-parabolic systems of balance laws in multi-space dimensions
多空间维度中平衡律一般双曲-抛物线系统解的渐近行为

Yanni Zeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanni Zeng', 18)}}的其他基金

Conservation Laws with Partial Dissipation in Continuum Mechanics
连续介质力学中的部分耗散守恒定律
  • 批准号:
    0207154
  • 财政年份:
    2002
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Standard Grant
Conservation Laws with Partial Dissipation in Continuum Mechanics
连续介质力学中的部分耗散守恒定律
  • 批准号:
    9972031
  • 财政年份:
    1999
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Standard Grant
International Research Fellow Awards: Large Time Behavior of Solutions to Nonlinear Hyperbolic-Parabolic Systems of Conservation Laws with Non-Strict Hyperbolicity
国际研究员奖:非严格双曲性守恒定律非线性双曲-抛物线系统解的大时间行为
  • 批准号:
    9704618
  • 财政年份:
    1997
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Asymptotic Behavior of Solutions To Nonlinear Viscoelasticity With Fading Memory
数学科学:记忆衰退非线性粘弹性解的渐近行为
  • 批准号:
    9307928
  • 财政年份:
    1993
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Standard Grant

相似国自然基金

李超代数的parabolic范畴O的若干问题
  • 批准号:
    11371278
  • 批准年份:
    2013
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
  • 批准号:
    EP/Y033078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Research Grant
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
  • 批准号:
    2349846
  • 财政年份:
    2024
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246606
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Standard Grant
Analysis of blow-up phenomena for nonlinear parabolic equations
非线性抛物方程的爆炸现象分析
  • 批准号:
    23K13005
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Elliptic and Parabolic Partial Differential Equations
职业:椭圆和抛物型偏微分方程
  • 批准号:
    2236491
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246611
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Standard Grant
Analysis of formation and extinction of singularities in nonlinear parabolic equations
非线性抛物方程中奇点的形成和消失分析
  • 批准号:
    23K12998
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mathematical approach to 2 phase problem in unbounded domains and an extension of its approach to the theory of quasilinear parabolic equations
无界域中两相问题的数学方法及其对拟线性抛物型方程理论的扩展
  • 批准号:
    22H01134
  • 财政年份:
    2022
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effective Ergodic Theory: Parabolic and Hyperbolic
有效的遍历理论:抛物线和双曲线
  • 批准号:
    2154208
  • 财政年份:
    2022
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Standard Grant
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
  • 批准号:
    22K03387
  • 财政年份:
    2022
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了