Conservation Laws with Partial Dissipation in Continuum Mechanics
连续介质力学中的部分耗散守恒定律
基本信息
- 批准号:9972031
- 负责人:
- 金额:$ 5.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-15 至 2002-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is to study laws for continuum mechanics, describing the conservationor balance of physical quantities such as mass, momentum, energy, etc. Themathematical description of those laws are complicated nonlinear systems ofpartial differential equations. The systems contain certain terms representingthe dissipative mechanism such as viscosity, heat conduction, frictional damping,relaxation, species diffusion, etc. On one hand, the nonlinearity of the systemstends to generating singularities (shock waves) in the flows. On the other hand,the dissipative mechanism eases such a tendency, but gives rise to richer wavepatterns at the same time. The overall behavior of the flows then depends onthe competition between the two. The difficulty of the problem lies in the factthat the dissipation exists only in certain equations (laws) of a system. Forinstance, physics dictates that the conservation of mass should not have anydissipation. Such a fact then further complicates the competition betweennonlinearity and dissipation. In different wave directions, one or the otherdominates. It is then easy to understand that in general there is no explicitformula for a solution. In fact, even the existence of a solution can be an openquestion. In this project, the awardee will study when a solution canexist all the time. Furthermore, if a solution exists all the time, what isits qualitative behavior? To this aim, the awardee will first reduce the systeminto a set of simplified, decoupled equations. Each of them represents a wavealong a particular direction, and can be solved explicitly. These waves togethergive the time asymptotic wave pattern of the original system. Next, the awardeewill study how well the asymptotic solution approximates the actual solution.Through such a study, the understanding of the underlying physical phenomena canbe obtained.The problems addressed in this research can be illustrated by an example. When a space shuttle returns to the earth, the temperature of the air around it becomes so high that the internal structure of the molecules in the air gets excited, and chemical reactions occur. The air then loses its local thermodynamic equilibrium state. The departure from equilibrium in turn provides the ``driving force" for internal changes. The air relaxes towards its local equilibrium state throughmolecular collisions. Such relaxation processes have significant influence inthe acoustic directions, but not the particle path direction. The awardeewill study how the relaxation processes change the overall behavior ofthe air flow in this situation.
本项目研究连续介质力学中描述质量、动量、能量等物理量守恒或平衡的规律,这些规律的数学描述是复杂的非线性偏微分方程组。该系统包含一定的条款representingthe耗散机制,如粘度,热传导,摩擦阻尼,松弛,物种扩散等一方面,系统的非线性倾向于产生奇异性(冲击波)的流动。另一方面,耗散机制缓解了这种趋势,但同时产生了更丰富的波型。流的整体行为则取决于两者之间的竞争。问题的难点在于耗散只存在于系统的某些方程(定律)中。例如,物理学规定,质量守恒不应该有任何耗散。这样一个事实,然后进一步复杂的竞争之间的非线性和耗散。在不同的波向中,一个或另一个占主导地位。这样就很容易理解,一般来说,没有一个明确的解决方案的公式。事实上,甚至解决方案的存在也可能是一个悬而未决的问题。在这个项目中,获奖者将研究什么时候一个解决方案可以一直存在。此外,如果一个解一直存在,它的定性行为是什么?为此,获奖者将首先减少系统到一组简化的,解耦的方程。它们中的每一个都代表一个沿特定方向的波,并且可以显式求解。这些波一起给出了原系统的时间渐近波型。接下来,获奖者将研究渐近解与实际解的近似程度。通过这样的研究,可以获得对潜在物理现象的理解。本研究中所解决的问题可以通过一个例子来说明。当航天飞机返回地球时,它周围的空气温度变得如此之高,以至于空气中分子的内部结构被激发,发生化学反应。然后,空气失去其局部热力学平衡状态。偏离均衡反过来又为内部变化提供了“驱动力”。空气通过分子碰撞向其局部平衡状态弛豫。这种弛豫过程对声波方向有显著影响,但对粒子路径方向无明显影响。该奖项将研究在这种情况下,松弛过程如何改变气流的整体行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanni Zeng其他文献
Recent results for the logarithmic Keller-Segel-Fisher/KPP System
对数 Keller-Segel-Fisher/KPP 系统的最新结果
- DOI:
10.5269/bspm.v38i7.44494 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yanni Zeng;Kun Zhao - 通讯作者:
Kun Zhao
Gas Flows with Several Thermal Nonequilibrium Modes
- DOI:
10.1007/s00205-009-0247-4 - 发表时间:
2010-04 - 期刊:
- 影响因子:2.5
- 作者:
Yanni Zeng - 通讯作者:
Yanni Zeng
GLOBAL EXISTENCE THEORY FOR A GENERAL CLASS OF HYPERBOLIC BALANCE LAWS
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yanni Zeng - 通讯作者:
Yanni Zeng
Global stability of a system of viscous balance laws arising from chemotaxis with dynamic boundary flux
具有动态边界通量的趋化作用产生的粘性平衡律系统的全局稳定性
- DOI:
10.1016/j.jde.2024.10.037 - 发表时间:
2025-01-25 - 期刊:
- 影响因子:2.300
- 作者:
Yanni Zeng;Kun Zhao - 通讯作者:
Kun Zhao
Asymptotic behavior of solutions to general hyperbolic-parabolic systems of balance laws in multi-space dimensions
多空间维度中平衡律一般双曲-抛物线系统解的渐近行为
- DOI:
10.4310/pamq.2018.v14.n1.a6 - 发表时间:
2018 - 期刊:
- 影响因子:0.7
- 作者:
Yanni Zeng - 通讯作者:
Yanni Zeng
Yanni Zeng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanni Zeng', 18)}}的其他基金
Hyperbolic-Parabolic Balance Laws with Applications
双曲-抛物线平衡定律及其应用
- 批准号:
1908195 - 财政年份:2019
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Conservation Laws with Partial Dissipation in Continuum Mechanics
连续介质力学中的部分耗散守恒定律
- 批准号:
0207154 - 财政年份:2002
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
International Research Fellow Awards: Large Time Behavior of Solutions to Nonlinear Hyperbolic-Parabolic Systems of Conservation Laws with Non-Strict Hyperbolicity
国际研究员奖:非严格双曲性守恒定律非线性双曲-抛物线系统解的大时间行为
- 批准号:
9704618 - 财政年份:1997
- 资助金额:
$ 5.5万 - 项目类别:
Fellowship Award
Mathematical Sciences: Asymptotic Behavior of Solutions To Nonlinear Viscoelasticity With Fading Memory
数学科学:记忆衰退非线性粘弹性解的渐近行为
- 批准号:
9307928 - 财政年份:1993
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
相似海外基金
Nonlinear Partial Differential Equations in Conservation Laws and Applications
守恒定律中的非线性偏微分方程及其应用
- 批准号:
1907519 - 财政年份:2019
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
Partial Differential Equations: Conservation Laws and Hamilton Jacobi Equations
偏微分方程:守恒定律和哈密顿雅可比方程
- 批准号:
471078-2014 - 财政年份:2014
- 资助金额:
$ 5.5万 - 项目类别:
University Undergraduate Student Research Awards
Partial Differential Equations in Conservation Laws and Applications
守恒定律中的偏微分方程及其应用
- 批准号:
1312800 - 财政年份:2013
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
Structure of partial difference equations with continuous symmetries and conservation laws
具有连续对称性和守恒定律的偏差分方程的结构
- 批准号:
EP/I038659/1 - 财政年份:2012
- 资助金额:
$ 5.5万 - 项目类别:
Research Grant
Structure of partial difference equations with continuous symmetries and conservation laws
具有连续对称性和守恒定律的偏差分方程的结构
- 批准号:
EP/I038675/1 - 财政年份:2012
- 资助金额:
$ 5.5万 - 项目类别:
Research Grant
Structure of solutions to the systems of nonlinear hyperbolic partial differential equations arising in fluid dynamics and conservation laws for phase transition dynamics
流体动力学中出现的非线性双曲偏微分方程组的解的结构和相变动力学守恒定律
- 批准号:
23540250 - 财政年份:2011
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis and applications of nonlinear partial differential equations in conservation laws and kinetic theories
非线性偏微分方程在守恒定律和动力学理论中的分析及应用
- 批准号:
1108647 - 财政年份:2011
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Analysis of Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的分析及相关应用
- 批准号:
0906160 - 财政年份:2009
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Research on Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的研究及相关应用
- 批准号:
0807551 - 财政年份:2008
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Structures and singular perturbations limits of solutions to the systems of non-strictly hyperbolic nonlinear partial differential equations for the conservation laws in the phase transition dynamics
相变动力学守恒定律非严格双曲非线性偏微分方程组解的结构和奇异摄动极限
- 批准号:
18540202 - 财政年份:2006
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)