Conservation Laws with Partial Dissipation in Continuum Mechanics

连续介质力学中的部分耗散守恒定律

基本信息

  • 批准号:
    0207154
  • 负责人:
  • 金额:
    $ 7.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

Proposal #0207154PI: Yanni ZengInstitution: University of Alabama BirminghamTitle: Conservation laws with partial dissipation in continuum mechanicsThis project is concerned with systems of conservation laws (balance laws), a broad class of nonlinear partial differential equations (PDEs) arising from continuum mechanics. Of special interest are equations with partial dissipation, including hyperbolic-parabolic systems, hyperbolic systems with fading memory, and hyperbolic systems with relaxation. The purpose of the research is to obtain a better understanding of the underlying physical phenomena through the study of the qualitative behavior of the solutions of the PDEs. The first objective is to obtain the nonlinear stability of shock profiles for hyperbolic systems with relaxation, including fully dissipative systems and those containing one non-decaying wave in a linearly degenerate field (systems of composite type). The second objective is to obtain a similar stability result for initial boundary-value problems for hyperbolic-parabolic systems, especially to understand the effect of the boundary. The third objective is to extend the study to contact discontinuities and rarefaction waves. The research conducted under this award is relevant for the study of compressible viscous flows, the motion of viscoelastic materials, gas dynamics in thermal nonequilibrium, and magnetohydrodynamics. By including viscosity, heat conduction, electrical resistivity, excited internal structures of molecules, chemical reactions, and so on we focus on mathematical models that are closer to the real world than the traditional ideal ones. The project has three specific objectives. The first objective is to understand the stability properties of shock profiles in, for example, high-temperature gas flows when the internal structure of molecules and chemical reactions are no longer negligible. This problem arises, for example, at the reentry of a space shuttle into the atmosphere and is quite different from the traditional supersonic flight of an airplane. The second objective is to better understand gas flows near a solid surface. The third objective is to study more complete wave patterns in several cases.
提案#0207154 PI:Yanni Zeng机构:亚拉巴马伯明翰大学标题:连续介质力学中的部分耗散守恒律本项目涉及守恒律系统(平衡律),这是一个广泛的非线性偏微分方程(PDE),源于连续介质力学。 特别感兴趣的是具有部分耗散的方程,包括双曲抛物方程组,具有衰减记忆的双曲方程组和具有松弛的双曲方程组。 研究的目的是通过对偏微分方程解的定性行为的研究,更好地理解潜在的物理现象。 第一个目标是获得具有松弛的双曲系统的激波剖面的非线性稳定性,包括完全耗散系统和在线性退化场中包含一个非衰减波的系统(复合型系统)。 第二个目标是获得双曲抛物方程组初边值问题的类似稳定性结果,特别是了解边界的影响。 第三个目标是将研究扩展到接触不连续和稀疏波。在该奖项下进行的研究是相关的可压缩粘性流动,粘弹性材料的运动,热不平衡气体动力学和磁流体力学的研究。 通过包括粘度,热传导,电阻率,分子的激发内部结构,化学反应,等等,我们专注于数学模型,更接近真实的世界比传统的理想。 该项目有三个具体目标。 第一个目标是了解激波剖面的稳定性,例如,当分子的内部结构和化学反应不再可以忽略不计时,高温气流中的激波剖面。 例如,在航天飞机重返大气层时就会出现这个问题,这与传统的飞机超音速飞行完全不同。 第二个目标是更好地理解固体表面附近的气体流动。 第三个目标是在几种情况下研究更完整的波型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanni Zeng其他文献

Recent results for the logarithmic Keller-Segel-Fisher/KPP System
对数 Keller-Segel-Fisher/KPP 系统的最新结果
Gas Flows with Several Thermal Nonequilibrium Modes
GLOBAL EXISTENCE THEORY FOR A GENERAL CLASS OF HYPERBOLIC BALANCE LAWS
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanni Zeng
  • 通讯作者:
    Yanni Zeng
Global stability of a system of viscous balance laws arising from chemotaxis with dynamic boundary flux
具有动态边界通量的趋化作用产生的粘性平衡律系统的全局稳定性
  • DOI:
    10.1016/j.jde.2024.10.037
  • 发表时间:
    2025-01-25
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Yanni Zeng;Kun Zhao
  • 通讯作者:
    Kun Zhao
Asymptotic behavior of solutions to general hyperbolic-parabolic systems of balance laws in multi-space dimensions
多空间维度中平衡律一般双曲-抛物线系统解的渐近行为

Yanni Zeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanni Zeng', 18)}}的其他基金

Hyperbolic-Parabolic Balance Laws with Applications
双曲-抛物线平衡定律及其应用
  • 批准号:
    1908195
  • 财政年份:
    2019
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Conservation Laws with Partial Dissipation in Continuum Mechanics
连续介质力学中的部分耗散守恒定律
  • 批准号:
    9972031
  • 财政年份:
    1999
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
International Research Fellow Awards: Large Time Behavior of Solutions to Nonlinear Hyperbolic-Parabolic Systems of Conservation Laws with Non-Strict Hyperbolicity
国际研究员奖:非严格双曲性守恒定律非线性双曲-抛物线系统解的大时间行为
  • 批准号:
    9704618
  • 财政年份:
    1997
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Asymptotic Behavior of Solutions To Nonlinear Viscoelasticity With Fading Memory
数学科学:记忆衰退非线性粘弹性解的渐近行为
  • 批准号:
    9307928
  • 财政年份:
    1993
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant

相似海外基金

Nonlinear Partial Differential Equations in Conservation Laws and Applications
守恒定律中的非线性偏微分方程及其应用
  • 批准号:
    1907519
  • 财政年份:
    2019
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Continuing Grant
Partial Differential Equations: Conservation Laws and Hamilton Jacobi Equations
偏微分方程:守恒定律和哈密顿雅可比方程
  • 批准号:
    471078-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 7.39万
  • 项目类别:
    University Undergraduate Student Research Awards
Partial Differential Equations in Conservation Laws and Applications
守恒定律中的偏微分方程及其应用
  • 批准号:
    1312800
  • 财政年份:
    2013
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Continuing Grant
Structure of partial difference equations with continuous symmetries and conservation laws
具有连续对称性和守恒定律的偏差分方程的结构
  • 批准号:
    EP/I038659/1
  • 财政年份:
    2012
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Research Grant
Structure of partial difference equations with continuous symmetries and conservation laws
具有连续对称性和守恒定律的偏差分方程的结构
  • 批准号:
    EP/I038675/1
  • 财政年份:
    2012
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Research Grant
Structure of solutions to the systems of nonlinear hyperbolic partial differential equations arising in fluid dynamics and conservation laws for phase transition dynamics
流体动力学中出现的非线性双曲偏微分方程组的解的结构和相变动力学守恒定律
  • 批准号:
    23540250
  • 财政年份:
    2011
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis and applications of nonlinear partial differential equations in conservation laws and kinetic theories
非线性偏微分方程在守恒定律和动力学理论中的分析及应用
  • 批准号:
    1108647
  • 财政年份:
    2011
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Analysis of Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的分析及相关应用
  • 批准号:
    0906160
  • 财政年份:
    2009
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Research on Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的研究及相关应用
  • 批准号:
    0807551
  • 财政年份:
    2008
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Structures and singular perturbations limits of solutions to the systems of non-strictly hyperbolic nonlinear partial differential equations for the conservation laws in the phase transition dynamics
相变动力学守恒定律非严格双曲非线性偏微分方程组解的结构和奇异摄动极限
  • 批准号:
    18540202
  • 财政年份:
    2006
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了