RI: Small: Secure, Private, and Resource-Constrained Approaches to Federated Machine Learning
RI:小型:安全、私有且资源受限的联合机器学习方法
基本信息
- 批准号:1909577
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a world increasingly shaped by data-driven machine learning (ML), one of the emerging challenges is that data are often collected and stored in a distributed manner -- across multiple datacenters or devices. On the other hand, due to security and privacy concerns, there are often low levels of trust between the data owners. To this end, federated ML enables ML with distributed data, while avoiding the transfer of private data from distributed devices to a central datacenter. Towards the goal of democratizing ML, this project will design and implement new techniques to make federated ML secure and private. Of particular interest are new system designs that enable federated ML on devices with limited computational power or communication bandwidth e.g., smartphones, smart health monitors, and smartwatches, among others. The ideas, software, and results of this project will directly impact industry and real-world applications. This project will include curriculum development for federated ML and plans to involve participation by graduate students from underrepresented groups. This project creates a transformative new direction for federated machine learning (ML) research, by enabling ML on devices that are untrusted or weak, and across organizations and for users who would like to maintain the privacy of their data. This project will include new work on theoretical foundations, systems design, implementation, and integration with popular ML software. Concretely, this project tackles three challenges in federated ML. The first challenge is fault-tolerant ML algorithms, i.e., new techniques to perform ML when workers act in arbitrarily malicious manners (called Byzantine failures) -- in particular, this project will show that by leveraging natural noise-tolerance in ML, it is possible to tolerate significantly more Byzantine workers than indicated by the traditional distributed computing literature. The second challenge is to develop privacy-preserving ML algorithms which introduce noise from workers to preserve the privacy of data owned by participants while leading to correct and fast ML at the global level. The third challenge is to investigate resource-constrained ML scheduling by including new techniques to allow large neural network models to run across multiple devices which have memory constraints. In addition to developing the algorithmic and theoretical frameworks for these directions, this project will also build and release open software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在一个越来越多地由数据驱动的机器学习(ML)塑造的世界中,一个新出现的挑战是数据通常以分布式方式收集和存储-跨多个数据中心或设备。另一方面,由于安全和隐私问题,数据所有者之间的信任程度往往很低。为此,联邦ML支持ML与分布式数据,同时避免将私有数据从分布式设备传输到中央数据中心。为了实现ML民主化的目标,该项目将设计和实现新技术,使联合ML安全和私密。特别令人感兴趣的是新的系统设计,这些设计使联合ML能够在具有有限计算能力或通信带宽的设备上实现,例如,智能手机、智能健康监测器和智能手表等。该项目的想法、软件和结果将直接影响行业和实际应用。该项目将包括联邦ML的课程开发,并计划让代表性不足的群体的研究生参与。该项目为联合机器学习(ML)研究创造了一个变革性的新方向,通过在不受信任或薄弱的设备上,跨组织和希望维护其数据隐私的用户启用ML。该项目将包括理论基础,系统设计,实现以及与流行ML软件集成的新工作。具体来说,这个项目解决了联邦ML中的三个挑战。第一个挑战是容错ML算法,即,当工作者以任意恶意方式(称为拜占庭故障)行事时执行ML的新技术-特别是,该项目将表明,通过利用ML中的自然噪声容忍度,可以容忍比传统分布式计算文献所指出的更多的拜占庭工作者。第二个挑战是开发保护隐私的机器学习算法,该算法引入来自工作人员的噪音,以保护参与者拥有的数据的隐私,同时在全球层面上实现正确和快速的机器学习。第三个挑战是研究资源受限的ML调度,包括新技术,允许大型神经网络模型在具有内存限制的多个设备上运行。除了为这些方向开发算法和理论框架外,该项目还将构建和发布开放软件。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Xiaojun Xu;Jacky Y. Zhang;Evelyn Ma;Danny Son;Oluwasanmi Koyejo;Bo Li
- 通讯作者:Xiaojun Xu;Jacky Y. Zhang;Evelyn Ma;Danny Son;Oluwasanmi Koyejo;Bo Li
ZenoPS: A Distributed Learning System Integrating Communication Efficiency and Security
ZenoPS:集通信效率与安全于一体的分布式学习系统
- DOI:10.3390/a15070233
- 发表时间:2022
- 期刊:
- 影响因子:2.3
- 作者:Xie, Cong;Koyejo, Oluwasanmi;Gupta, Indranil
- 通讯作者:Gupta, Indranil
A Nonconvex Framework for Structured Dynamic Covariance Recovery
- DOI:
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Katherine Tsai;M. Kolar;Oluwasanmi Koyejo
- 通讯作者:Katherine Tsai;M. Kolar;Oluwasanmi Koyejo
Controllable Radiance Fields for Dynamic Face Synthesis
- DOI:10.1109/3dv57658.2022.00075
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Peiye Zhuang;Liqian Ma;Oluwasanmi Koyejo;A. Schwing
- 通讯作者:Peiye Zhuang;Liqian Ma;Oluwasanmi Koyejo;A. Schwing
Quadratic metric elicitation for fairness and beyond
- DOI:
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:G. Hiranandani;Jatin Mathur;H. Narasimhan;Oluwasanmi Koyejo
- 通讯作者:G. Hiranandani;Jatin Mathur;H. Narasimhan;Oluwasanmi Koyejo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oluwasanmi Koyejo其他文献
Sparse Parameter Recovery from Aggregated Data
从聚合数据恢复稀疏参数
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Avradeep Bhowmik;Joydeep Ghosh;Oluwasanmi Koyejo - 通讯作者:
Oluwasanmi Koyejo
Binary Classification with Karmic, Threshold-Quasi-Concave Metrics
具有业力、阈值准凹度量的二元分类
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Bowei Yan;Oluwasanmi Koyejo;Kai Zhong;Pradeep Ravikumar - 通讯作者:
Pradeep Ravikumar
Aggregation for Sensitive Data
敏感数据聚合
- DOI:
10.1109/sampta45681.2019.9030955 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Avradeep Bhowmik;J. Ghosh;Oluwasanmi Koyejo - 通讯作者:
Oluwasanmi Koyejo
The dynamic basis of cognition: an integrative core under the control of the ascending neuromodulatory system
认知的动态基础:上行神经调节系统控制下的整合核心
- DOI:
10.1101/266635 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
James M. Shine;Michael Breakspear;P. Bell;K. E. Martens;Richard Shine;Oluwasanmi Koyejo;Olaf Sporns;Russell A. Poldrack - 通讯作者:
Russell A. Poldrack
Simultaneous Prognosis and Exploratory Analysis of Multiple Chronic Conditions Using Clinical Notes
使用临床记录对多种慢性病进行同步预后和探索性分析
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Shalmali Joshi;Oluwasanmi Koyejo;Kristine Resurreccion;Joydeep Ghosh - 通讯作者:
Joydeep Ghosh
Oluwasanmi Koyejo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oluwasanmi Koyejo', 18)}}的其他基金
Collaborative Research: SCH: Fair Federated Representation Learning for Breast Cancer Risk Scoring
合作研究:SCH:乳腺癌风险评分的公平联合表示学习
- 批准号:
2205329 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Probabilistic Models for Spatiotemporal Data with Applications to Dynamic Brain Connectivity
职业:时空数据的概率模型及其在动态大脑连接中的应用
- 批准号:
2046795 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
NSF-AoF: NeTS: Small: Local 6G Connectivity: Controlled, Resilient, and Secure (6G-ConCoRSe)
NSF-AoF:NetS:小型:本地 6G 连接:受控、弹性和安全 (6G-ConCoRSe)
- 批准号:
2326599 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2247619 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CIF: Small: Efficiency and Robustness of Secure Computation
CIF:小:安全计算的效率和稳健性
- 批准号:
2327981 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2247620 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Privacy-Preserving Dynamic Spectrum Access
协作研究:SaTC:核心:小型:安全且保护隐私的动态频谱访问
- 批准号:
2325563 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Privacy-Preserving Dynamic Spectrum Access
协作研究:SaTC:核心:小型:安全且保护隐私的动态频谱访问
- 批准号:
2325564 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
- 批准号:
2411207 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF-BSF: SaTC: CORE: Small: Prevention, Detection and Mitigation for Secure Interdomain Routing
NSF-BSF:SaTC:CORE:小型:安全域间路由的预防、检测和缓解
- 批准号:
2247810 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant














{{item.name}}会员




