CHS: Small: Efficient Simulation of Thin Materials With Discrete Tension Field Theory

CHS:小型:利用离散张力场理论对薄材料进行有效模拟

基本信息

  • 批准号:
    1910274
  • 负责人:
  • 金额:
    $ 49.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Thin shell simulations are a foundational tool in scientific computing. They are used to analyze the behavior of biological structures such as vesicles and cell membranes, to simulate deformation of fabrics and composites, to predict scarring and wrinkling of skin in surgery training and visualization tools, and to analyze buckling and crumpling of structural elements in buildings and vehicles. This research will establish new algorithms for simulating the physical behavior of thin curved materials such as fabric, paper, or sheet metal, with unprecedented efficiency, whereas such simulations currently are notoriously difficult and computationally expensive because thin objects like a sheet of paper or cloth bend far more readily than they stretch and will prefer to buckle and crumple in geometrically complex ways rather than compress. Moreover, this complexity is unpredictable and chaotic; the exact pattern of wrinkles can vary wildly even for identical objects under identical loads. Finally, predicting how a thin object behaves under frictional contact with itself and the environment is especially challenging; due to the thin geometry, expensive collision detection and response algorithms must be used to ensure that thin parts do not tunnel through each other, no matter how quickly or forcefully they are pushed together.To make thin material simulations more practical for use in engineering, design, and robotics applications, where performance is critical, this project will develop a more efficient, simplified model for how to simulate deformation of thin materials. The key insight, borrowed from the tension field approach in continuum mechanics, is that the behavior of thin objects is dominated by lines of tension through the material, while fine-scale wrinkles induced by compression and bending are extraordinarily expensive to resolve yet contribute little to the object's coarse-scale shape or mechanical behavior. By exploiting this insight and focusing computational effort on tracking and simulating the lines of tension, the performance of thin shell simulations can be substantially improved without sacrificing accuracy. Put another way, in regions of pure tension the elastic membrane energy is convex and standard shell finite element methods perform well. Whereas in regions of pure compression, or mixed tension and compression, buckling occurs since there is a scale separation between the resistance of thin materials to compression and to bending, and the post-buckled state of the shell contains many highly nonlinear, complex wrinkles and creases, yet the coarse shape of the shell can nevertheless be approximated by ignoring the wrinkles and treating the shell as a collection of 1D curves aligned to the tensile stress directions on the shell. The detailed work plan will comprise work on tension-dominated surfaces, mixed-stress surfaces, and contact and friction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
薄外壳模拟是科学计算中的基础工具。它们用于分析生物结构(例如囊泡和细胞膜)的行为,模拟织物和复合材料的变形,以预测手术训练和可视化工具中皮肤的疤痕和皱纹,并分析建筑物和车辆中结构元素的屈曲和弯曲。这项研究将建立新的算法,以模拟薄弯曲材料的物理行为,例如织物,纸张或钣金,并具有前所未有的效率,而当前的模拟众所周知,众所周知,这在计算上是昂贵的,因为薄的物体(如一张纸或布料)比伸展和弯腰更容易弯曲,而不是在地球上弯曲而不是压缩的方式而不是压缩。 而且,这种复杂性是不可预测和混乱的。即使对于相同的载荷下相同的对象,皱纹的确切模式也会差异很大。最后,预测薄物物体在与自身和环境之间的摩擦接触下的行为特别具有挑战性。由于几何形状,必须使用昂贵的碰撞检测和响应算法来确保薄零件不会彼此隧道,无论将它们推到多快或有力地被压在一起。要使薄材料模拟在工程,设计和机器人应用中更实用,在绩效的地方,重要的是,该项目将更加有效地模拟材料的材料,以便在效率上进行更重要的模拟模拟材料的模拟材料,从而更加有效地模拟材料。 从连续力学中借用的张力场方法借用的关键见解是,薄物体的行为是通过材料通过张力线主导的,而由压缩和弯曲引起的细尺度皱纹则非常昂贵,无法解决,但对物体的粗尺度形状或机械行为几乎没有任何贡献。 通过利用这种洞察力并将计算工作集中在跟踪和模拟张力线上,可以在不牺牲准确性的情况下显着改善薄壳模拟的性能。 换句话说,在纯张力区域中,弹性膜能是凸,标准壳有限元方法的性能很好。 Whereas in regions of pure compression, or mixed tension and compression, buckling occurs since there is a scale separation between the resistance of thin materials to compression and to bending, and the post-buckled state of the shell contains many highly nonlinear, complex wrinkles and creases, yet the coarse shape of the shell can nevertheless be approximated by ignoring the wrinkles and treating the shell as a collection of 1D curves aligned to the tensile stress directions在外壳上。 详细的工作计划将包括有关张力主导的表面,混合压力表面以及联系和摩擦的工作。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准来通过评估来支持的。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational Design of Self‐Actuated Surfaces by Printing Plastic Ribbons on Stretched Fabric
  • DOI:
    10.1111/cgf.14489
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    David Jourdan;M. Skouras;E. Vouga;A. Bousseau
  • 通讯作者:
    David Jourdan;M. Skouras;E. Vouga;A. Bousseau
Octahedral Frames for Feature-Aligned Cross Fields
  • DOI:
    10.1145/3374209
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Zhang;Josh Vekhter;E. Chien;D. Bommes;E. Vouga;J. Solomon
  • 通讯作者:
    Paul Zhang;Josh Vekhter;E. Chien;D. Bommes;E. Vouga;J. Solomon
C-Space tunnel discovery for puzzle path planning
  • DOI:
    10.1145/3386569.3392468
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinya Zhang;Robert Belfer;P. Kry;E. Vouga
  • 通讯作者:
    Xinya Zhang;Robert Belfer;P. Kry;E. Vouga
Fine Wrinkling on Coarsely Meshed Thin Shells
  • DOI:
    10.1145/3462758
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    ChenZhen;ChenHsiao-Yu;M. KaufmanDanny;SkourasMélina;VougaEtienne
  • 通讯作者:
    ChenZhen;ChenHsiao-Yu;M. KaufmanDanny;SkourasMélina;VougaEtienne
Printing-on-Fabric Meta-Material for Self-Shaping Architectural Models
用于自成型建筑模型的织物超材料打印
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Vouga其他文献

Paul Vouga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Vouga', 18)}}的其他基金

Collaborative Research: Dynamics of Snapping of Tethers
合作研究:系绳折断动力学
  • 批准号:
    2310666
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Co-Design of Shape and Fabrication Plans for Direct-Ink Write Printing Through Predictive Simulation
合作研究:HCC:中:通过预测模拟共同设计直接墨水书写打印的形状和制造计划
  • 批准号:
    2212048
  • 财政年份:
    2022
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1304211
  • 财政年份:
    2013
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Fellowship Award

相似国自然基金

含高密度活性位点并可高效催化小分子氧化还原反应的碳基电催化剂的逆向设计
  • 批准号:
    52372254
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
海洋节菱孢菌中靶向RORγ-DLL3信号轴抗小细胞肺癌的Arthpyrone类吡啶酮生物碱的高效发掘及作用机制研究
  • 批准号:
    42376124
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
小分子高效诱导人成纤维细胞重编程为功能肝细胞的研究
  • 批准号:
    32300610
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于亲和超滤高效筛选苗药榜看雾中治疗类风湿性关节炎的小分子TNF-α抑制剂
  • 批准号:
    82360834
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
全稠环小分子受体聚合物化构建高效稳定的聚合物受体光伏材料
  • 批准号:
    22305076
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
  • 批准号:
    2341359
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
  • 批准号:
    2327013
  • 财政年份:
    2023
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2334624
  • 财政年份:
    2023
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了