SCH: INT: Collaborative Research: Uniting Causal and Mental Models for Shared Decision-Making in Diabetes
SCH:INT:协作研究:联合因果模型和心理模型以共同制定糖尿病决策
基本信息
- 批准号:1915182
- 负责人:
- 金额:$ 91.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Diabetes affects a growing portion of the population and, like many chronic diseases, it is primarily managed by patients themselves without day-to-day input from doctors. Keeping blood glucose within a healthy range is important for prevent long-term complications of diabetes, but many patients with Type 2 diabetes do not achieve this. As a result, it is important for patients to be invested in and knowledgeable about their treatment goals and plan. One promising approach to address this is shared decision-making (SDM), where a patient and clinician work together to understand the patient's preferences and collaboratively formulate a treatment plan. SDM can potentially increase patient trust and satisfaction, but patients, doctors, and other caregivers begin with different sets of beliefs about disease and treatment. This creates challenges for SDM, as each participant may have a different understanding about what will result from an action, and when a patient's beliefs differ from information provided by a doctor this can lead to communication challenges and reduced trust. Further, treatment guidelines generally focus on one factor at a time, like the role of exercise or nutrition, and are rarely personalized to individuals. Causal models could potentially be used to help people understand the link between their goals and actions, but they can be too complex for people to reason with. This project will lead to methods that can automatically learn personalized causal models that are specific to the decision-making situation and individual's health, and communicated in the context of an individual's knowledge. This work will close the gap from data to decisions by bridging computational methods for causal inference, insight into the cognitive processes underlying decisions, and shared decision-making. The project will also aim to reduce treatment disparities by creating training modules to educate clinicians about patient beliefs and how these influence trust and decision-making. Motivated by improving outcomes in Type 2 Diabetes (T2D), this work will fundamentally advance computational methods, and our understanding of cognition. While factors affecting blood glucose differ considerably between individuals, prior work has focused on finding population-level models. To address the need for personalized guidance, this work 1) develops novel approaches for finding personalized causal models (e.g. individual factors affecting blood glucose) from limited personal data by leveraging simulation, and 2) develops personalized abstractions of the inferred models, taking into account patient preferences and decision context, to reduce cognitive burden. This allows more relevant information to be delivered during decision-making. Since decisions are made in the context of existing knowledge, the second core focus of the project is linking causal models and mental models. While prior work has examined differences in mental models, it has not shown how to reconcile models across individuals. This work develops new approaches to more efficiently and accurately elicit an individual's mental model, map the elicited model to inferred causal models, and reconcile differences across individuals. The approaches will be deployed in shared decision-making between patient-provider and patient-caregiver pairs for T2D management both online and in local clinics. The methods developed will be applicable to many types of shared healthcare decisions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
糖尿病影响到越来越多的人口,像许多慢性病一样,它主要由患者自己管理,不需要医生的日常投入。将血糖保持在健康范围内对于预防糖尿病的长期并发症很重要,但许多2型糖尿病患者没有做到这一点。因此,对患者来说,投资并了解他们的治疗目标和计划是很重要的。解决这个问题的一个有希望的方法是共同决策(SDM),患者和临床医生一起工作,了解患者的偏好,共同制定治疗计划。SDM可以潜在地增加患者的信任和满意度,但患者、医生和其他护理人员一开始对疾病和治疗有不同的信念。这给SDM带来了挑战,因为每个参与者可能对行动的结果有不同的理解,当患者的信念与医生提供的信息不同时,这可能导致沟通挑战和信任降低。此外,治疗指南通常一次只关注一个因素,比如运动或营养的作用,很少针对个人进行个性化处理。因果模型可能被用来帮助人们理解他们的目标和行动之间的联系,但它们可能过于复杂,人们无法推理。该项目将产生能够自动学习特定于决策情况和个人健康的个性化因果模型的方法,并在个人知识的背景下进行交流。这项工作将通过连接因果推理的计算方法,洞察决策背后的认知过程和共享决策,缩小从数据到决策的差距。该项目还旨在通过创建培训模块,教育临床医生了解患者的信念以及这些信念如何影响信任和决策,从而减少治疗差异。在改善2型糖尿病(T2D)预后的激励下,这项工作将从根本上推进计算方法和我们对认知的理解。虽然影响血糖的因素在个体之间存在很大差异,但之前的工作主要集中在寻找人群水平的模型。为了满足个性化指导的需求,本工作1)开发了利用模拟从有限的个人数据中寻找个性化因果模型(例如影响血糖的个体因素)的新方法;2)开发了推断模型的个性化抽象,考虑到患者的偏好和决策背景,以减轻认知负担。这允许在决策过程中提供更多相关信息。由于决策是在现有知识的背景下做出的,因此该项目的第二个核心焦点是将因果模型和心智模型联系起来。虽然先前的工作已经研究了心理模型的差异,但它并没有显示如何在个体之间协调模型。这项工作开发了新的方法,以更有效和准确地引出个人的心理模型,将引出的模型映射到推断的因果模型,并调和个体之间的差异。这些方法将用于在线和当地诊所T2D管理的患者-提供者和患者-护理人员对之间的共同决策。所开发的方法将适用于许多类型的共享医疗保健决策。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating Potentials and Pitfalls of Knowledge Distillation Across Datasets for Blood Glucose Forecasting
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Hadia Hameed;Samantha Kleinberg
- 通讯作者:Hadia Hameed;Samantha Kleinberg
How beliefs influence choice perceptions
信念如何影响选择观念
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kleinberg, S;Korshakova, E.;Marsh, J. K.
- 通讯作者:Marsh, J. K.
Comparing Machine Learning Techniques for Blood Glucose Forecasting Using Free-living and Patient Generated Data.
比较使用自由生活数据和患者生成的数据进行血糖预测的机器学习技术。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Hameed,Hadia;Kleinberg,Samantha
- 通讯作者:Kleinberg,Samantha
It’s Complicated: Improving Decisions on Causally Complex Topics
事情很复杂:改进因果复杂主题的决策
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kleinberg, Samantha;Marsh, Jessecae K.
- 通讯作者:Marsh, Jessecae K.
Tell me something I don't know: How perceived knowledge influences the use of information during decision making
告诉我一些我不知道的事情:感知知识如何影响决策过程中信息的使用
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kleinberg, Samantha;Marsh, Jessecae K.
- 通讯作者:Marsh, Jessecae K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samantha Kleinberg其他文献
Systems Biology via Redescription and Ontologies : Untangling the Malaria Parasite Life Cycle
通过重新描述和本体论进行系统生物学:解开疟疾寄生虫的生命周期
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Samantha Kleinberg;Kevin Casey;B. Mishra - 通讯作者:
B. Mishra
Predicting Malaria Interactome Classifications from Time-course Transcriptomic Data along the Intraerythrocytic Developmental Cycle
从红细胞内发育周期的时程转录组数据预测疟疾相互作用组分类
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Antonina Mitrofanova;Samantha Kleinberg;Jane Carlton;Simon Kasif;Bud Mishra - 通讯作者:
Bud Mishra
Metamorphosis: the Coming Transformation of Translational Systems Biology
变形:转化系统生物学即将到来的变革
- DOI:
10.1145/1626135.1629775 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Samantha Kleinberg;B. Mishra - 通讯作者:
B. Mishra
Causal inference for time series datasets with partially overlapping variables
具有部分重叠变量的时间序列数据集的因果推断
- DOI:
10.1016/j.jbi.2025.104828 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:4.500
- 作者:
Louis Adedapo Gomez;Jan Claassen;Samantha Kleinberg - 通讯作者:
Samantha Kleinberg
Causality, Probability, and Time: Bibliography
- DOI:
10.1017/cbo9781139207799.012 - 发表时间:
2012-11 - 期刊:
- 影响因子:0
- 作者:
Samantha Kleinberg - 通讯作者:
Samantha Kleinberg
Samantha Kleinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samantha Kleinberg', 18)}}的其他基金
Collaborative Research: Using Causal Explanations and Computation to Understand Misplaced Beliefs
协作研究:使用因果解释和计算来理解错误的信念
- 批准号:
2146984 - 财政年份:2022
- 资助金额:
$ 91.79万 - 项目类别:
Standard Grant
III: SMALL: Moving Beyond Knowledge to Action: Evaluating and Improving the Utility of Causal Inference
III:小:超越知识到行动:评估和提高因果推理的实用性
- 批准号:
1907951 - 财政年份:2019
- 资助金额:
$ 91.79万 - 项目类别:
Continuing Grant
CAREER: Learning from Observational Data with Knowledge
职业:从观察数据中学习知识
- 批准号:
1347119 - 财政年份:2014
- 资助金额:
$ 91.79万 - 项目类别:
Continuing Grant
相似国自然基金
内源性逆转录病毒MER65-int调控人类胎
盘发育与子宫内膜重塑的功能研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
- 批准号:LQ22H160033
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2343183 - 财政年份:2023
- 资助金额:
$ 91.79万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2313481 - 财政年份:2022
- 资助金额:
$ 91.79万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10573225 - 财政年份:2021
- 资助金额:
$ 91.79万 - 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10392429 - 财政年份:2021
- 资助金额:
$ 91.79万 - 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
- 批准号:
2124270 - 财政年份:2021
- 资助金额:
$ 91.79万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014554 - 财政年份:2020
- 资助金额:
$ 91.79万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014552 - 财政年份:2020
- 资助金额:
$ 91.79万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2019389 - 财政年份:2020
- 资助金额:
$ 91.79万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013651 - 财政年份:2020
- 资助金额:
$ 91.79万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013122 - 财政年份:2020
- 资助金额:
$ 91.79万 - 项目类别:
Standard Grant