CAREER: Learning from Observational Data with Knowledge
职业:从观察数据中学习知识
基本信息
- 批准号:1347119
- 负责人:
- 金额:$ 52.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large observational datasets from social networks, climatology, finance, and other areas have made it possible for researchers to test complex hypotheses that previous studies would have been under-powered to tackle. This is especially true in biology and health, with the proliferation of new methods for gathering long-term population data, such as from electronic medical records, and real-world health data from body-worn sensors. However, the number of complex hypotheses that can be tested in datasets with hundreds or thousands of variables far surpasses what humans can propose and reason about. Exhaustively testing all possible relationships is not computationally feasible, and after this testing a researcher must still examine a non-trivial number of seemingly significant findings to determine which still need to be validated experimentally. This project aims specifically to infer causal relationships, as these provide insight into not only how a system behaves, but also why it behaves as it does, enabling the development of successful interventions. Results from this work will be incorporated into education at three levels (high school, undergraduate, and graduate) through university courses and summer programs for high school students. In addition to communicating the core concepts of causal inference, the summer programs will also introduce potential computer scientists to key areas of computer science research. Applications of the methods developed to data from stroke and diabetes may lead to new knowledge about the physiologic processes underlying recovery in stroke, and the complex interaction of factors affecting glucose in people with diabetes.This work will lead to more robust and efficient inference of causal relationships from large-scale datasets, through a feedback loop between experiments and prior knowledge. Current approaches require users to specify the set of variables and hypotheses to be tested, but these limit findings to the set a user chose to explore. Instead this work will develop methods that can use prior knowledge in the form of causal relationships as well as prior experimental results to constrain what will be tested and generate new hypotheses. Causes provide information about their effect that are not contained in other variables, so this work will develop measures of how explanatory a cause is and how much information it yields, and use changes in this measure to guide generation of complex relationships in the constrained hypothesis space. The proposed approach differs from stochastic heuristics in that the new method will be deterministic, and will evaluate relationships individually, thus addressing the computational challenge and reducing the impact of incorrect inference. Second, the work will lead to algorithms that can automatically evaluate how findings relate to prior knowledge, whether they are, for example, consistent, novel, or contradictory. This will allow researchers to focus more in depth on findings likely to be significant or interesting, rather than those that simply confirm prior knowledge. It also provides a feedback loop between knowledge and inference.
来自社交网络、气候学、金融和其他领域的大型观测数据使研究人员有可能测试复杂的假设,而以前的研究可能无法解决这些假设。随着收集长期人口数据的新方法的激增,在生物学和健康领域尤其如此,例如从电子医疗记录收集数据,以及从穿戴在身上的传感器收集真实世界的健康数据。然而,可以在包含数百或数千个变量的数据集中测试的复杂假设的数量,远远超过了人类提出和推理的数量。彻底测试所有可能的关系在计算上是不可行的,在测试之后,研究人员仍然必须检查大量看似重要的发现,以确定哪些仍然需要实验验证。这个项目专门旨在推断因果关系,因为这些因果关系不仅提供了对系统如何行为的洞察,而且还提供了为什么它这样做的洞察力,从而使成功的干预措施的开发成为可能。这项工作的成果将通过大学课程和高中生暑期计划纳入三个级别的教育(高中、本科和研究生)。除了交流因果推理的核心概念外,暑期项目还将向潜在的计算机科学家介绍计算机科学研究的关键领域。将开发的方法应用于中风和糖尿病的数据,可能会导致对中风潜在的康复生理过程的新认识,以及糖尿病患者影响血糖的因素的复杂相互作用。这项工作将通过实验和先验知识之间的反馈循环,从大规模数据集中更稳健和更有效地推断因果关系。目前的方法需要用户指定要测试的变量和假设集,但这些方法将结果限制在用户选择探索的集。相反,这项工作将开发一些方法,这些方法可以使用因果关系形式的先验知识以及先前的实验结果来限制将被测试的内容并产生新的假设。原因提供了有关其影响的信息,而这些信息并不包含在其他变量中,因此这项工作将开发一个原因有多大的解释性以及它产生了多少信息的度量,并使用这一度量中的变化来指导在受约束的假设空间中生成复杂的关系。该方法与随机启发式方法的不同之处在于,新方法将是确定性的,并将单独评估关系,从而解决了计算挑战,并减少了错误推理的影响。其次,这项工作将导致算法,可以自动评估发现如何与先验知识相关,例如,它们是一致的、新颖的还是矛盾的。这将使研究人员能够更深入地关注可能具有重大意义或有趣的发现,而不是那些简单地证实先前知识的发现。它还在知识和推理之间提供了一个反馈回路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samantha Kleinberg其他文献
Systems Biology via Redescription and Ontologies : Untangling the Malaria Parasite Life Cycle
通过重新描述和本体论进行系统生物学:解开疟疾寄生虫的生命周期
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Samantha Kleinberg;Kevin Casey;B. Mishra - 通讯作者:
B. Mishra
Predicting Malaria Interactome Classifications from Time-course Transcriptomic Data along the Intraerythrocytic Developmental Cycle
从红细胞内发育周期的时程转录组数据预测疟疾相互作用组分类
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Antonina Mitrofanova;Samantha Kleinberg;Jane Carlton;Simon Kasif;Bud Mishra - 通讯作者:
Bud Mishra
Metamorphosis: the Coming Transformation of Translational Systems Biology
变形:转化系统生物学即将到来的变革
- DOI:
10.1145/1626135.1629775 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Samantha Kleinberg;B. Mishra - 通讯作者:
B. Mishra
Causal inference for time series datasets with partially overlapping variables
具有部分重叠变量的时间序列数据集的因果推断
- DOI:
10.1016/j.jbi.2025.104828 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:4.500
- 作者:
Louis Adedapo Gomez;Jan Claassen;Samantha Kleinberg - 通讯作者:
Samantha Kleinberg
Causality, Probability, and Time: Bibliography
- DOI:
10.1017/cbo9781139207799.012 - 发表时间:
2012-11 - 期刊:
- 影响因子:0
- 作者:
Samantha Kleinberg - 通讯作者:
Samantha Kleinberg
Samantha Kleinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samantha Kleinberg', 18)}}的其他基金
Collaborative Research: Using Causal Explanations and Computation to Understand Misplaced Beliefs
协作研究:使用因果解释和计算来理解错误的信念
- 批准号:
2146984 - 财政年份:2022
- 资助金额:
$ 52.91万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Uniting Causal and Mental Models for Shared Decision-Making in Diabetes
SCH:INT:协作研究:联合因果模型和心理模型以共同制定糖尿病决策
- 批准号:
1915182 - 财政年份:2019
- 资助金额:
$ 52.91万 - 项目类别:
Standard Grant
III: SMALL: Moving Beyond Knowledge to Action: Evaluating and Improving the Utility of Causal Inference
III:小:超越知识到行动:评估和提高因果推理的实用性
- 批准号:
1907951 - 财政年份:2019
- 资助金额:
$ 52.91万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
- 批准号:
10707881 - 财政年份:2022
- 资助金额:
$ 52.91万 - 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
- 批准号:
10370048 - 财政年份:2022
- 资助金额:
$ 52.91万 - 项目类别:
SCH: Tackling Progressive Disease - Learning from Longitudinal Observational Clinical Data in the Presence of Noise and Confounding
SCH:应对进展性疾病 - 在存在噪声和混杂因素的情况下从纵向观察临床数据中学习
- 批准号:
2124127 - 财政年份:2021
- 资助金额:
$ 52.91万 - 项目类别:
Standard Grant
Predicting invasive ventilation and its effect on mortality for patients with pneumonia: an observational study using machine learning and a target trial approach
预测有创通气及其对肺炎患者死亡率的影响:使用机器学习和目标试验方法的观察性研究
- 批准号:
437164 - 财政年份:2020
- 资助金额:
$ 52.91万 - 项目类别:
Studentship Programs
Neural circuitry for observational learning of maternal behavior - Administrative Supplement
用于观察学习母亲行为的神经回路 - 行政补充
- 批准号:
10649948 - 财政年份:2020
- 资助金额:
$ 52.91万 - 项目类别:
Neural circuitry for observational learning of maternal behavior
用于观察学习母亲行为的神经回路
- 批准号:
10254255 - 财政年份:2020
- 资助金额:
$ 52.91万 - 项目类别:
CDS&E-MSS: Causal learning and inference on complex observational data
CDS
- 批准号:
1952929 - 财政年份:2020
- 资助金额:
$ 52.91万 - 项目类别:
Standard Grant
CAREER: Robust Policy Learning for Safe and Reliable Algorithmic Decision Making from Observational Data in Sensitive Applications
职业:通过敏感应用中的观测数据进行稳健的策略学习,以实现安全可靠的算法决策
- 批准号:
1846210 - 财政年份:2019
- 资助金额:
$ 52.91万 - 项目类别:
Continuing Grant
Observational Learning Method Utilizing the Visibility of Objects for Daily Assistive Robots
利用物体可见性的日常辅助机器人的观察学习方法
- 批准号:
19K20374 - 财政年份:2019
- 资助金额:
$ 52.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Learning Decision Rules with Observational Data
用观察数据学习决策规则
- 批准号:
1916163 - 财政年份:2019
- 资助金额:
$ 52.91万 - 项目类别:
Standard Grant