Numerical solution methods for coupled population balance systems for the dynamic simulation of multivariate particle processes at the example of shape-selective crystallization
以择形结晶为例动态模拟多元粒子过程的耦合群体平衡系统的数值求解方法
基本信息
- 批准号:238685695
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project (six-year period) is the development of accurate and efficient methods for the numerical solution of multivariate population balance systems. As application problem, we consider an innovative shape-selective crystallization process. The final aim is the optimal process design and operation through the use of the developed numerical methods. In order to reach this goal, it is planned to develop and systematically compare techniques for the numerical treatment of the differential and integral operators appearing in population balance equations. These two types of operators are entirely different in their mathematical properties as well as in the appropriate numerical techniques for their solution. We establish benchmark problems which exhibit the desired behaviour of particle populations. These benchmarks are also realized experimentally. Through the experiments, reliable measured data become available which serve as reference values and support the evaluation of the numerical techniques. In the first project period, we closed gaps which existed concerning the evaluation of numerical techniques for the univariate case. In the second project period, we focus on the bivariate case (crystals with two internal properties), both in its experimental realization as well as in the development of suitable numerical methods and a subsequent systematic comparison of experimental and simulation results. In the third project period we plan to realize experimentally an integrated shape-selective crystallization process with several coupled process units and to simulate this process by using the developed numerical techniques. With this process we want to control the size and shape distribution of the crystal product. With respect to growth-dominated multivariate processes, improved algebraic stabilization schemes will be developed and used for the simulation of population balance systems in chemical engineering problems.Another aim of the third period is the numerical treatment of multivariate aggregation processes. It will be shown for uniform grids that aggregation integrals can be evaluated with linear costs by use of the Fast Fourier Transformation (FFT). This allows simulations on much finer grids than with conventional methods. The prerequisite for this approach is a separable approximation of the aggregation kernel - a property featured by many kernel functions of practical relevance.
该项目的目标(六年期)是发展准确和有效的方法,用于多变量人口平衡系统的数值解。作为应用问题,我们考虑一种创新的择形结晶工艺。最终目标是通过使用开发的数值方法进行最佳工艺设计和操作。为了实现这一目标,计划发展和系统地比较人口平衡方程中出现的微分和积分算子的数值处理技术。这两种类型的运营商是完全不同的,在他们的数学性质,以及在适当的数值技术,为他们的解决方案。 我们建立基准问题,表现出所需的行为的粒子种群。这些基准也实现了实验。通过实验,可靠的测量数据成为可用的参考值,并支持评估的数值技术。在第一个项目期间,我们填补了单变量情况下的数值技术评价方面存在的差距。在第二个项目期间,我们专注于双变量的情况下(两个内部属性的晶体),无论是在其实验实现,以及在合适的数值方法的发展和随后的实验和模拟结果的系统比较。在第三个项目期间,我们计划实验实现一个集成的形状选择性结晶过程与几个耦合的过程单元,并通过使用开发的数值技术来模拟这个过程。通过这种方法,我们希望控制晶体产品的尺寸和形状分布。对于增长主导的多变量过程,将发展改进的代数稳定化方案,并用于模拟化学工程问题中的种群平衡系统。第三阶段的另一个目标是多变量聚集过程的数值处理。它将被证明为均匀的网格,聚合积分可以通过使用快速傅立叶变换(FFT)的线性成本进行评估。这允许在比传统方法更精细的网格上进行模拟。这种方法的先决条件是聚合核的可分离近似-这是许多具有实际意义的核函数的特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Sabine Le Borne其他文献
Professorin Dr. Sabine Le Borne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Horndeski理论中Randall-Sundrum型厚膜解的研究
- 批准号:11605127
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
N-体问题的中心构型及动力系统的分支理论
- 批准号:10601071
- 批准年份:2006
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Efficient Numerical Solution for Constrained Tensor Ring Decomposition: A Theoretical Convergence Analysis and Applications
约束张量环分解的高效数值解:理论收敛性分析及应用
- 批准号:
20K19749 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Moving Transformation Methods for the Numerical Solution of Partial Differential Equations
偏微分方程数值解的移动变换方法
- 批准号:
540111-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Analysis of Stochastic Neuronal Models Using Eigenvalue Numerical Solution Methods that Overcome the Curse of Dimensionality
使用特征值数值求解方法分析随机神经元模型,克服维数灾难
- 批准号:
18K11518 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on numerical solution methods with stable and high accuracy for large-scale linear systems
大型线性系统稳定高精度数值求解方法研究
- 批准号:
18K11342 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimized time-stepping methods for the numerical solution of differential equations
微分方程数值求解的优化时间步长方法
- 批准号:
228090-2008 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Meshfree methods for the numerical solution of partial differential equations from fluid dynamics
流体动力学偏微分方程数值求解的无网格方法
- 批准号:
228396809 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Efficient Numerical Solution Methods for Dislocation based Plasticity
基于位错的塑性的高效数值求解方法
- 批准号:
206435149 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Units
Studies on direct reconstruction methods and their numerical implementations for the solution of some inverse problems for partial differential equations
偏微分方程部分反问题求解的直接重构方法及其数值实现研究
- 批准号:
23540173 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimized time-stepping methods for the numerical solution of differential equations
微分方程数值求解的优化时间步长方法
- 批准号:
228090-2008 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual