Multi-Functional Optical Meta-Systems Enabled by Deep-Learning-Aided Inverse Design
由深度学习辅助逆向设计实现的多功能光学元系统
基本信息
- 批准号:1916839
- 负责人:
- 金额:$ 52.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical Description: Artificial intelligence especially deep learning has enabled many breakthroughs in both academia and industry. This project aims to create a generative and versatile design approach based on novel deep learning techniques to realize integrated, multi-functional photonic systems, and provide proof-of-principle demonstrations in experiments. Compared with traditional approaches using extensive numerical simulations or inverse design algorithms, deep learning can uncover the highly complicated relationship between a photonic structure and its properties from the dataset, and hence substantially accelerate the design of novel photonic devices that simultaneously encode distinct functionalities in response to the designated wavelength, polarization, angle of incidence and other parameters. Such multi-functional photonic systems have important applications in many areas, including optical imaging, holographic display, biomedical sensing, and consumer photonics with high efficiency and fidelity, to benefit the public and the nation. The integrated education plan will considerably enhance outreach activities and educate students in grades 7-12, empowered by the successful experience and partnership previously established by the PIs. Graduate and undergraduate students participating in the project will learn the latest developments in the multidisciplinary fields of photonics, deep learning and advanced manufacturing, and gain real-world knowledge by engaging industrial collaborators in tandem with Northeastern University's renowned cooperative education program.Technical Description: Metasurfaces, which are two-dimensional metamaterials consisting of a planar array of subwavelength designer structures, have created a new paradigm to tailor optical properties in a prescribed manner, promising superior integrability, flexibility, performance and reliability to advance photonics technologies. However, so far almost all metasurface designs rely on time-consuming numerical simulations or stochastic searching approaches that are limited in a small parameter space. To fully exploit the versatility of metasurfaces, it is highly desired to establish a general, functionality-driven methodology to efficiently design metasurfaces that encompass distinctly different optical properties and performances within a single system. The objective of the project is to create and demonstrate a high-efficiency, two-level design approach enabled by deep learning, in order to realize integrated, multi-functional meta-systems. Proper deep learning methods, such as Conditional Variational Auto-Encoder and Deep Bidirectional-Convolutional Network, will be investigated, innovatively reformulated and tailored to apply at the single-element level and the large-scale system level in combination with topology optimization and genetic algorithm. Such a generative design approach can directly and automatically identify the optimal structures and configurations out of the full parameter space. The designed multi-functional optical meta-systems will be fabricated and characterized to experimentally confirm their performances. The success of the project will produce transformative photonic architectures to manipulate light on demand.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述:人工智能,尤其是深度学习,在学术界和工业界都实现了许多突破。该项目旨在创建一种基于新型深度学习技术的生成和通用设计方法,以实现集成的多功能光子系统,并在实验中提供原理验证演示。与使用大量数值模拟或逆向设计算法的传统方法相比,深度学习可以从数据集中揭示光子结构与其属性之间的高度复杂关系,从而大大加快新型光子器件的设计,这些器件可以同时编码不同的功能,以响应指定的波长,偏振,入射角和其他参数。这种多功能光子系统在光学成像、全息显示、生物医学传感和消费光子学等许多领域具有重要的应用,具有高效率和保真度,以造福公众和国家。综合教育计划将大大加强外联活动,并教育7-12年级的学生,通过成功的经验和先前由PI建立的伙伴关系增强能力。参与该项目的研究生和本科生将学习光子学、深度学习和先进制造等多学科领域的最新发展,并通过与东北大学著名的合作教育项目合作,与工业合作者一起获得现实世界的知识。技术描述:超表面是由亚波长设计结构的平面阵列组成的二维超材料,已经创造了一种新的范例,以规定的方式定制光学特性,有望实现上级可集成性、灵活性、性能和可靠性,以推进光子技术。然而,到目前为止,几乎所有的元表面设计都依赖于耗时的数值模拟或随机搜索方法,这些方法局限于小的参数空间。为了充分利用超颖表面的多功能性,高度期望建立通用的功能驱动的方法来有效地设计在单个系统内包含明显不同的光学性质和性能的超颖表面。该项目的目标是创建和展示一种通过深度学习实现的高效两级设计方法,以实现集成的多功能元系统。适当的深度学习方法,如条件变分自动编码器和深度双向卷积网络,将被研究,创新地重新制定和定制,以应用于单元件级和大规模系统级,并结合拓扑优化和遗传算法。这种生成式设计方法可以直接和自动地从整个参数空间中识别出最优的结构和构型。所设计的多功能光学元系统将被制造和表征,以实验确认其性能。该项目的成功将产生变革性的光子架构,以按需操纵光。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Harnessing Evanescent Waves by Bianisotropic Metasurfaces
- DOI:10.1002/lpor.201900244
- 发表时间:2020-09-13
- 期刊:
- 影响因子:11
- 作者:Li, Lin;Yao, Kan;Liu, Yongmin
- 通讯作者:Liu, Yongmin
Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise
- DOI:10.1126/science.ade5140
- 发表时间:2023-01-20
- 期刊:
- 影响因子:56.9
- 作者:Xiong, Bo;Liu, Yu;Wang, Mu
- 通讯作者:Wang, Mu
Software-defined nanophotonic devices and systems empowered by machine learning
- DOI:10.1016/j.pquantelec.2023.100469
- 发表时间:2023-04
- 期刊:
- 影响因子:11.7
- 作者:Yihao Xu;Bo Xiong;Wei Ma;Yongmin Liu
- 通讯作者:Yihao Xu;Bo Xiong;Wei Ma;Yongmin Liu
Structured Light Generation Using Angle‐Multiplexed Metasurfaces
- DOI:10.1002/adom.202300299
- 发表时间:2023-06
- 期刊:
- 影响因子:9
- 作者:Lin Deng;Renchao Jin;Yihao Xu;Yongmin Liu
- 通讯作者:Lin Deng;Renchao Jin;Yihao Xu;Yongmin Liu
Decoupled Phase Modulation for Circularly Polarized Light via Chiral Metasurfaces
- DOI:10.1021/acsphotonics.2c01397
- 发表时间:2022-12
- 期刊:
- 影响因子:7
- 作者:Ren-chao Jin;Lin Deng;LiLi Tang;Yue Cao;Yongmin Liu;Z. Dong
- 通讯作者:Ren-chao Jin;Lin Deng;LiLi Tang;Yue Cao;Yongmin Liu;Z. Dong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongmin Liu其他文献
SMALL HANKEL OPERATORS ON WEIGHTED BERGMAN SPACES OF BOUNDED SYMMETRIC DOMAINS
- DOI:
10.1016/s0252-9602(17)30728-2 - 发表时间:
2000 - 期刊:
- 影响因子:1
- 作者:
Yongmin Liu - 通讯作者:
Yongmin Liu
Reconstruction of Cretaceous-Eocene arcs along the southern Asian margin under Neo-Tethyan subduction
新特提斯洋俯冲作用下亚洲南缘白垩纪 - 始新世岛弧的重建
- DOI:
10.1016/j.lithos.2025.107995 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:2.500
- 作者:
Yongmin Liu;Weiming Fan;Touping Peng;Rendeng Shi;Shengsheng Chen;Pengpeng Huangfu - 通讯作者:
Pengpeng Huangfu
Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity.
二维介电环形布拉格谐振腔的荧光增强。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:3.8
- 作者:
Yongmin Liu;Sheng Wang;Yong;Xiaobo Yin;Xiang Zhang - 通讯作者:
Xiang Zhang
Controlling Electric and Magnetic Resonances for Ultra-Compact Nanoantennas with Switchable Directionality
控制具有可切换方向性的超紧凑纳米天线的电磁共振
- DOI:
10.1364/ls.2015.lth3i.4 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kan Yao;Yongmin Liu - 通讯作者:
Yongmin Liu
Accelerated photonic design of coolhouse film for photosynthesis via machine learning
通过机器学习加速用于光合作用的温室薄膜的光子设计
- DOI:
10.1038/s41467-024-54983-8 - 发表时间:
2025-02-06 - 期刊:
- 影响因子:15.700
- 作者:
Jinlei Li;Yi Jiang;Bo Li;Yihao Xu;Huanzhi Song;Ning Xu;Peng Wang;Dayang Zhao;Zhe Liu;Sheng Shu;Juyou Wu;Miao Zhong;Yongguang Zhang;Kefeng Zhang;Bin Zhu;Qiang Li;Wei Li;Yongmin Liu;Shanhui Fan;Jia Zhu - 通讯作者:
Jia Zhu
Yongmin Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongmin Liu', 18)}}的其他基金
CDS&E: Elucidating and Controlling the Spectral, Spatial and Temporal Responses of Plasmonic Nanostructures based on a Data-Driven Approach
CDS
- 批准号:
2202268 - 财政年份:2022
- 资助金额:
$ 52.95万 - 项目类别:
Continuing Grant
Non-Hermitian and Topological Plasmonic Devices for Light Manipulation at the Nanoscale
用于纳米级光操纵的非厄米和拓扑等离激元器件
- 批准号:
2136168 - 财政年份:2021
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant
Chiroptical Sensing and Sorting by Structured Materials and Structured Light
通过结构材料和结构光进行手性光学传感和分类
- 批准号:
1931777 - 财政年份:2019
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant
CAREER: Spin Plasmonics for Ultrafast All-Optical Manipulation of Magnetization in Hybrid Metal-Ferromagnet Structures
职业:用于混合金属-铁磁体结构中磁化的超快全光学操纵的自旋等离子体
- 批准号:
1654192 - 财政年份:2017
- 资助金额:
$ 52.95万 - 项目类别:
Continuing Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
FastMOT - Fast gated superconducting nanowire camera for multi-functional optical tomograph
FastMOT - 用于多功能光学断层扫描的快速门控超导纳米线相机
- 批准号:
10063660 - 财政年份:2023
- 资助金额:
$ 52.95万 - 项目类别:
EU-Funded
The Functional Significance of Plant Optical Diversity: A Multi-scale Analysis
植物光分集的功能意义:多尺度分析
- 批准号:
RGPIN-2015-05129 - 财政年份:2019
- 资助金额:
$ 52.95万 - 项目类别:
Discovery Grants Program - Individual
PFI-TT: Bioresorbable multi-functional optical sensor for brain implant
PFI-TT:用于脑植入的生物可吸收多功能光学传感器
- 批准号:
1827693 - 财政年份:2018
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant
The Functional Significance of Plant Optical Diversity: A Multi-scale Analysis
植物光分集的功能意义:多尺度分析
- 批准号:
RGPIN-2015-05129 - 财政年份:2018
- 资助金额:
$ 52.95万 - 项目类别:
Discovery Grants Program - Individual
Comprehensive three dimensional evaluation of macular disease with multi-functional optical coherence tomography
多功能光学相干断层扫描对黄斑病变的综合三维评估
- 批准号:
18K09460 - 财政年份:2018
- 资助金额:
$ 52.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Functional Significance of Plant Optical Diversity: A Multi-scale Analysis
植物光分集的功能意义:多尺度分析
- 批准号:
RGPIN-2015-05129 - 财政年份:2017
- 资助金额:
$ 52.95万 - 项目类别:
Discovery Grants Program - Individual
Design and Synthesis of New Multi-Functional MOFs Based on Molybdenum and Tungsten SBUs as Optical Functional Materials
基于钼和钨SBU的新型多功能MOF光学功能材料的设计与合成
- 批准号:
315656120 - 财政年份:2016
- 资助金额:
$ 52.95万 - 项目类别:
Research Fellowships
The Functional Significance of Plant Optical Diversity: A Multi-scale Analysis
植物光分集的功能意义:多尺度分析
- 批准号:
RGPIN-2015-05129 - 财政年份:2016
- 资助金额:
$ 52.95万 - 项目类别:
Discovery Grants Program - Individual
The Functional Significance of Plant Optical Diversity: A Multi-scale Analysis
植物光分集的功能意义:多尺度分析
- 批准号:
RGPIN-2015-05129 - 财政年份:2015
- 资助金额:
$ 52.95万 - 项目类别:
Discovery Grants Program - Individual
MRI: Acquisition of a Multi-functional Near-field Scanning Optical Microscopy (NSOM) System to Establish a Cross-disciplinary Nano-imaging/spectroscopy Laboratory at CCNY
MRI:购置多功能近场扫描光学显微镜 (NSOM) 系统,在 CCNY 建立跨学科纳米成像/光谱实验室
- 批准号:
1531859 - 财政年份:2015
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant