Non-Hermitian and Topological Plasmonic Devices for Light Manipulation at the Nanoscale

用于纳米级光操纵的非厄米和拓扑等离激元器件

基本信息

  • 批准号:
    2136168
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Title: Non-Hermitian and Topological Plasmonic Devices for Light Manipulation at the NanoscaleOptics and photonics play a vital role in both fundamental science and cutting-edge technologies. Examples include solar energy harvesting and conversion, fiber optic communications, and optical data storage, to name a few. New strategies are urgently needed to further advance the design and implementation of nanoscale photonic devices, in which the loss and defect impose significant limitations on the performance of the devices. The goal of this project is to investigate the novel phenomena and functions, such as unidirectional transport of light waves, defect-immune photonic states, and nanoscale lasers with low input power, by engineering the spatial distribution of material properties as well as the structural topology. The success of the project will lead to a crucial step towards the development of integrated photonic devices with low energy consumption, small footprint, and robust performance to benefit optical information processing, secure communications, enhanced sensing, and quantum technology for a wide range of applications. In addition, the project provides an interdisciplinary platform to engage students, especially those from underrepresented groups, and foster them to become next-generation scientists and engineers in the fields of photonics, materials science, nanotechnology and applied physics. The proposed research lies at the interface of nano plasmonics, non-Hermitian photonics, and topological optics. The interplays among the three rapidly growing fields have profound implications. On one hand, plasmonics has shown remarkable abilities to beat the diffraction limit, generate local hotspots with electric fields amplified by orders of magnitude, and significantly enhance light-matter interactions. However, it is known that the loss and imperfection in geometries strongly influence the optical responses of plasmonic nanostructures and the performance of plasmonic devices. The notion of non-Hermitian and topological physics can potentially address these challenges. On the other hand, up to date, non-Hermitian optics and topological photonics have been mostly realized in systems with the feature size at the micrometer scale. It is of great interest to investigate if and how the two concepts could enable novel properties and applications at the nanoscale. Plasmonics provides an excellent testbed in this regard, thanks to the large flexibility in engineering the geometry, resonance, coupling, dispersion, and complex dielectric constants of subwavelength plasmonic elements. The proposed project consists of three research thrusts, including (1) demonstration of unidirectional excitation and reflection of surface plasmon polaritons in non-Hermitian plasmonic devices by modulating the permittivity in the complex plane; (2) investigation of topological states in one-dimensional and two-dimensional non-Hermitian plasmonic structures, which are immune to defects, imperfections, and disorder; and (3) numerical and experimental study of low-threshold and topologically protected plasmonic nanolasers. The research findings of the project will open up a new route to efficiently generate, harness and transport light and energy in an unprecedented manner.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
职务名称:非厄米和拓扑等离子体器件在纳米尺度上的光操纵光学和光子学在基础科学和尖端技术中起着至关重要的作用。例子包括太阳能收集和转换,光纤通信和光学数据存储,仅举几例。纳米光子器件的损耗和缺陷对器件的性能造成了很大的限制,因此迫切需要新的策略来进一步推进纳米光子器件的设计和实现。该项目的目标是研究新的现象和功能,如光波的单向传输,缺陷免疫光子态和低输入功率的纳米激光器,通过工程材料特性的空间分布以及结构拓扑。该项目的成功将为开发具有低能耗、小尺寸和强大性能的集成光子器件迈出关键一步,从而有利于光学信息处理、安全通信、增强传感和量子技术的广泛应用。此外,该项目提供了一个跨学科的平台,吸引学生,特别是那些来自代表性不足的群体,并培养他们成为光子学,材料科学,纳米技术和应用物理领域的下一代科学家和工程师。拟议的研究在于纳米等离子体,非厄米光子学和拓扑光学的接口。这三个快速发展的领域之间的相互影响具有深远的意义。一方面,等离子体已经显示出超越衍射极限的非凡能力,产生具有数量级放大的电场的局部热点,并显着增强光与物质的相互作用。然而,它是已知的,在几何形状的损失和缺陷强烈影响等离子体纳米结构的光学响应和等离子体器件的性能。非厄米和拓扑物理学的概念可以潜在地解决这些挑战。另一方面,到目前为止,非厄米光学和拓扑光子学主要在特征尺寸为微米尺度的系统中实现。研究这两个概念是否以及如何在纳米级实现新的特性和应用是非常有趣的。等离子体激元在这方面提供了一个很好的测试平台,这要归功于在设计亚波长等离子体激元元件的几何形状、谐振、耦合、色散和复介电常数方面的巨大灵活性。该项目包括三个研究方向,包括:(1)通过调制复平面介电常数,演示非厄米等离子体器件中表面等离子体激元的单向激发和反射;(2)研究一维和二维非厄米等离子体结构中的拓扑状态,这些结构不受缺陷、缺陷和无序的影响;低阈值拓扑保护等离子体纳米激光器的数值模拟和实验研究。该项目的研究成果将开辟一条新的途径,以前所未有的方式有效地产生,利用和运输光和能源。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decoupled Phase Modulation for Circularly Polarized Light via Chiral Metasurfaces
  • DOI:
    10.1021/acsphotonics.2c01397
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Ren-chao Jin;Lin Deng;LiLi Tang;Yue Cao;Yongmin Liu;Z. Dong
  • 通讯作者:
    Ren-chao Jin;Lin Deng;LiLi Tang;Yue Cao;Yongmin Liu;Z. Dong
Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise
  • DOI:
    10.1126/science.ade5140
  • 发表时间:
    2023-01-20
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Xiong, Bo;Liu, Yu;Wang, Mu
  • 通讯作者:
    Wang, Mu
On‐Demand Mode Conversion and Wavefront Shaping via On‐Chip Metasurfaces
  • DOI:
    10.1002/adom.202200910
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Lin Deng;Yihao Xu;Ren-chao Jin;Ziqiang Cai;Yongmin Liu
  • 通讯作者:
    Lin Deng;Yihao Xu;Ren-chao Jin;Ziqiang Cai;Yongmin Liu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongmin Liu其他文献

SMALL HANKEL OPERATORS ON WEIGHTED BERGMAN SPACES OF BOUNDED SYMMETRIC DOMAINS
  • DOI:
    10.1016/s0252-9602(17)30728-2
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Yongmin Liu
  • 通讯作者:
    Yongmin Liu
Reconstruction of Cretaceous-Eocene arcs along the southern Asian margin under Neo-Tethyan subduction
新特提斯洋俯冲作用下亚洲南缘白垩纪 - 始新世岛弧的重建
  • DOI:
    10.1016/j.lithos.2025.107995
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Yongmin Liu;Weiming Fan;Touping Peng;Rendeng Shi;Shengsheng Chen;Pengpeng Huangfu
  • 通讯作者:
    Pengpeng Huangfu
Controlling Electric and Magnetic Resonances for Ultra-Compact Nanoantennas with Switchable Directionality
控制具有可切换方向性的超紧凑纳米天线的电磁共振
  • DOI:
    10.1364/ls.2015.lth3i.4
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kan Yao;Yongmin Liu
  • 通讯作者:
    Yongmin Liu
Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity.
二维介电环形布拉格谐振腔的荧光增强。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Yongmin Liu;Sheng Wang;Yong;Xiaobo Yin;Xiang Zhang
  • 通讯作者:
    Xiang Zhang
Accelerated photonic design of coolhouse film for photosynthesis via machine learning
通过机器学习加速用于光合作用的温室薄膜的光子设计
  • DOI:
    10.1038/s41467-024-54983-8
  • 发表时间:
    2025-02-06
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Jinlei Li;Yi Jiang;Bo Li;Yihao Xu;Huanzhi Song;Ning Xu;Peng Wang;Dayang Zhao;Zhe Liu;Sheng Shu;Juyou Wu;Miao Zhong;Yongguang Zhang;Kefeng Zhang;Bin Zhu;Qiang Li;Wei Li;Yongmin Liu;Shanhui Fan;Jia Zhu
  • 通讯作者:
    Jia Zhu

Yongmin Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongmin Liu', 18)}}的其他基金

CDS&E: Elucidating and Controlling the Spectral, Spatial and Temporal Responses of Plasmonic Nanostructures based on a Data-Driven Approach
CDS
  • 批准号:
    2202268
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Multi-Functional Optical Meta-Systems Enabled by Deep-Learning-Aided Inverse Design
由深度学习辅助逆向设计实现的多功能光学元系统
  • 批准号:
    1916839
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Chiroptical Sensing and Sorting by Structured Materials and Structured Light
通过结构材料和结构光进行手性光学传感和分类
  • 批准号:
    1931777
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Spin Plasmonics for Ultrafast All-Optical Manipulation of Magnetization in Hybrid Metal-Ferromagnet Structures
职业:用于混合金属-铁磁体结构中磁化的超快全光学操纵的自旋等离子体
  • 批准号:
    1654192
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

Hermitian几何中截面曲率的正性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
总体最小二乘问题的Hermitian解与半正定解的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Hermitian几何及其应用
  • 批准号:
    12171262
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
正负曲率条件与Hermitian流形上的若干几何问题
  • 批准号:
    12001490
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Hermitian几何中的退化完全非线性椭圆方程
  • 批准号:
    11801587
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
关于Hermitian Yang-Mills度量的两个问题
  • 批准号:
    11871016
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目
拟Hermitian流形上的若干几何分析问题
  • 批准号:
    11801517
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
紧Hermitian流形上复Monge-Ampère型⽅程及曲率研究
  • 批准号:
    11801516
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Pseudo-Hermitian流形上的拟调和映射及其热流
  • 批准号:
    11626217
  • 批准年份:
    2016
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
Hermitian流形上的完全非线性偏微分方程
  • 批准号:
    11601105
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
deformed Hermitian-Yang-Mills方程式の解の存在問題
变形Hermitian-Yang-Mills方程解的存在性问题
  • 批准号:
    24K06730
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-Hermitian Physics in Ultracold Atoms and Photonics
超冷原子和光子学中的非厄米物理
  • 批准号:
    2409943
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Topological insulators and free fermions: from Hermitian to non-Hermitian
拓扑绝缘体和自由费米子:从厄米特到非厄米特
  • 批准号:
    DP240100838
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
Exploration of novel non-Hermitian phenomena induced by active matter
探索活性物质引起的新颖非厄米现象
  • 批准号:
    23K13027
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
BRITE Pivot: Emergent Mechanics and Non-Hermitian Dynamics of Odd Elastic Solids
BRITE Pivot:奇数弹性固体的涌现力学和非厄米动力学
  • 批准号:
    2227474
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
  • 批准号:
    2326699
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
A study of solutions of the Painleve equation derived from monodromy invariant Hermitian forms.
研究从单向不变埃尔米特形式导出的 Painleve 方程的解。
  • 批准号:
    22KJ2518
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Controlling light with non-Hermitian Schrödinger dynamics
用非厄米薛定谔动力学控制光
  • 批准号:
    EP/X032256/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Non-Hermitian physics of heavy-fermion superconductors at exceptional points
重费米子超导体在特殊点的非厄米物理
  • 批准号:
    22KJ0752
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了