Fluidic Self-Assembly and Interconnection Processes: Fundamental Research, Scaling Limits, and Applications
流体自组装和互连过程:基础研究、扩展限制和应用
基本信息
- 批准号:239166543
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Background and Motivation: The production of nearly all man-made artifacts, including packaged microsystems, smart phones and computers, relies on robotic assembly lines that place, package, and connect a variety of disparate components. While robotic machines dominate the manufacturing world there are applications where the established processes of serial pick and place and manipulation of single objects, reach scaling limits. These established processes are challenged if the assembly and interconnection deals with (1) microscopic objects (<300 micrometer) or the assembly of large volumes at high throughput. At the other extreme, nature produces materials, structures, and living systems by self-assembly on a molecular length scale in a massively parallel way. Inspired by these processes self-assembly-based fabrication strategies have widely been adopted as an inevitable manufacturing tool in nanotechnology enabling the assembly of sub 100 nm objects. However, considering the state of the art, a large assembly gap remains since it is presently not possible to effectively assemble and connect microscopic (100nm-300 micrometer) objects with high yields, throughput, and precision. Objectives: The objective of this research is to develop a process to narrow this assembly gap and to enable the assembly and interconnection of functional components in particular miniaturized semiconductor dies and chips in a massively parallel manner. The first goal is to reduce the minimal chip size far beyond current levels while supporting the ability to form electrical interconnects between the assembled structures. The proposed approach is based on directed self-assembly instead of robotic pick and place. The intellectual merit of the first goal is to establish a knowledge base which will enable the engineering of self-assembly processes that have the potential to close or substantially narrow the outlined assembly gap. The research will investigate potential solutions and establish fundamental scaling laws of the forces, required agitation, receptors/binding sites, interconnection strategies, and component delivery mechanisms. The first goal should be characterized as fundamental research. The second goal is to demonstrate applications. The second goal is more specific and less fundamental in nature since it integrates working principles inside of an application specific self-assembly machine. The proposed assembly machine targets the production of large areas Solid State Lighting Panelsthat require the assembly and connection of LEDs on wide area substrates with high throughput (>10000 parts per hour) and yield. The intellectual merit of the second goal is to establish the blueprints of a continuous self-assembly machine that does not exist today. The realization of this machine is important since it will provide evidence that self-assembly has real applications which is required to aid technology adaptation outside of an academic setting.
背景和动机:几乎所有人工制品的生产,包括封装微系统、智能手机和计算机,都依赖于机器人装配线,这些装配线放置、包装和连接各种不同的部件。虽然机器人机器在制造业中占据主导地位,但在一些应用中,已建立的连续拾取和放置以及对单个对象的操作过程达到了规模限制。如果组装和互连涉及(1)微观物体(300微米)或以高吞吐量组装大容量物体,则这些已建立的工艺将受到挑战。在另一个极端,大自然以一种大规模平行的方式在分子长度尺度上自组装,从而产生材料、结构和生命系统。在这些工艺的启发下,基于自组装的制造策略已被广泛采用,作为纳米技术中一种不可避免的制造工具,使得能够组装亚100纳米的物体。然而,考虑到现有技术,由于目前不可能高产量、高产量和高精度地有效地组装和连接微观(100 nm-300微米)物体,因此仍然存在很大的组装缺口。目的:这项研究的目的是开发一种工艺来缩小这种组装差距,并使功能部件,特别是小型化半导体芯片和芯片的大规模并行组装和互连成为可能。第一个目标是将最小芯片尺寸降低到远远超过当前水平,同时支持在组装的结构之间形成电气互连的能力。所提出的方法是基于定向自组装而不是机器人拾取和放置。第一个目标的智力价值是建立一个知识库,使有可能缩小或大大缩小概述的组装差距的自组装过程得以工程实现。这项研究将调查潜在的解决方案,并建立力、所需搅拌、受体/结合位置、互连策略和成分传递机制的基本比例定律。第一个目标应该被描述为基础研究。第二个目标是演示应用程序。第二个目标更具体,本质上不那么根本,因为它将工作原理集成到特定于应用的自组装机中。拟议的装配机旨在生产大面积固态照明面板,这些面板需要在广域基板上组装和连接LED,产量高(>;每小时10000个部件)和产量。第二个目标的智力价值是建立一种今天不存在的连续自组装机的蓝图。这台机器的实现很重要,因为它将提供证据,证明自组装具有真正的应用,这是帮助学术环境以外的技术适应所必需的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approaching Roll-to-Roll Fluidic Self-Assembly: Relevant Parameters, Machine Design, and Applications
接近卷对卷流体自组装:相关参数、机器设计和应用
- DOI:10.1109/jmems.2015.2452772
- 发表时间:2015
- 期刊:
- 影响因子:2.7
- 作者:Se-Chul Park;Jun Fang;Shantonu Biswas;Mahsa Mozafari;Thomas Stauden;Heiko O. Jacobs
- 通讯作者:Heiko O. Jacobs
Deformable printed circuit boards that enable metamorphic electronics
- DOI:10.1038/am.2016.186
- 发表时间:2016-12-01
- 期刊:
- 影响因子:9.7
- 作者:Biswas, Shantonu;Schoeberl, Andreas;Jacobs, Heiko O.
- 通讯作者:Jacobs, Heiko O.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Heiko Jacobs其他文献
Professor Dr. Heiko Jacobs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Heiko Jacobs', 18)}}的其他基金
Research and Development of a Nanostructure Deposition System
纳米结构沉积系统的研究与开发
- 批准号:
247352488 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Entwicklung neuer unkonventioneller paralleler Methoden zur Modifikation und Herstellung von Strukturen im Mikro- und Nanometerbereich
开发用于修改和生产微米和纳米尺度结构的新型非常规并行方法
- 批准号:
5295814 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Emmy Noether International Fellowships
Gas-Phase Synthesis, Transport, and Parallel Printing of Charged Nanoparticles; Research Exploring a Discovered Electrodynamic Nanolens Based Transport Concept
带电纳米颗粒的气相合成、传输和并行打印;
- 批准号:
450218497 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Self-shrinkers的刚性及相关问题
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Self-peptide和Fe5C2构建的高敏感MR分子探针对肿瘤血管的MR靶向成像研究
- 批准号:81501521
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
平均曲率流中非紧Self-shrinkers的结构
- 批准号:11301190
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
2维伪欧氏空间下平均曲率流中Self-shrinker问题的研究
- 批准号:11126152
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
- 批准号:21171046
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
成束蛋白Fascin1在肺癌"self-seeding"过程中的作用及机制研究
- 批准号:81001041
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
工业用腈水合酶全新蛋白质翻译后调节体系self-subunit swapping的研究
- 批准号:31070711
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Programmable Micro-Fluidic Self-Assembly.
可编程微流体自组装。
- 批准号:
331729-2007 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Scaling Limits of Programmable Fluidic Self-Assembly Forming Electrical Interconnects
可编程流体自组装形成电气互连的规模限制
- 批准号:
0822202 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Programmable Micro-Fluidic Self-Assembly.
可编程微流体自组装。
- 批准号:
331729-2007 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Programmable Micro-Fluidic Self-Assembly.
可编程微流体自组装。
- 批准号:
331729-2007 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
SGER: Hierarchical Microfabrication: Actively Programmable Multi-level Fluidic Self-Assembly
SGER:分层微加工:主动可编程多级流体自组装
- 批准号:
0634652 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Programmable Micro-Fluidic Self-Assembly.
可编程微流体自组装。
- 批准号:
331729-2006 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Master's
SGER: Scaling Down Mechanically Driven Fluidic Self-Assembly
SGER:缩小机械驱动流体自组装规模
- 批准号:
0426779 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: Very-Large-Area Lithography System for Flexible Displays and Fluidic-Self-Assembly-Based Electronics
SBIR 第一阶段:用于柔性显示器和基于流体自组装的电子产品的超大面积光刻系统
- 批准号:
0214745 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: Two-Dimensional X-Ray Diffraction Detector Using New Fluidic Self-Assembly Manufacturing Techniques
SBIR 第一阶段:采用新型流体自组装制造技术的二维 X 射线衍射探测器
- 批准号:
0109652 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
GOALI: University-Industry Collaborative Research on Fluidic Self Assembly
目标:流体自组装产学合作研究
- 批准号:
9520403 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




