Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design

协作研究:基于分层多维网络的多竞争对手产品设计方法

基本信息

  • 批准号:
    2005661
  • 负责人:
  • 金额:
    $ 48.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The objective of this research is to investigate what product customers consider and what they eventually purchase using a hierarchical, multidimensional network-based design approach. Motivated by the need to model socio-technical interactions in engineering design, this research combines design theory with network science to explore three interrelated topics: 1) two-stage multidimensional network models for customer preference modeling that consider product associations and social influence; 2) dynamic network models for predicting the impact of multi-competitor strategic decisions, and 3) knowledge transfer to demonstrate generalizability and creation of shared data resources to benefit research community. This project will advance design theories of complex systems and develop quantitative methods for modeling socio-technical interactions in engineering design. Integrated with enterprise-driven design, the methods developed will enhance US industry’s competitiveness within changing markets. The test cases include a primary case study on the design of electric vehicles and small SUVs and a secondary case study on the design of household products. The project will also foster student training in data science, network science and Artificial Intelligence, with particular emphasis on the participation of underrepresented groups, females, and undergraduates.The intellectual merit of this research is manifested in four aspects. First, the hierarchical network model studies customers’ consideration and choice as distinct, but integrated, behaviors. It identifies distinctive driving factors underlying the consideration and choice stages. Second, this research overcomes the practical challenges of missing data on customers' social networks. The solution relies on an innovative approach to assess how individuals’ preferences are influenced by their own egocentric social contacts through a synergistic integration of autologistic actor attribute model (ALAAM) with the Multidimensional Customer-Product Network (MCPN) framework. Third, using temporal Exponential Random Graph Model (t-ERGM), the dynamic network modeling approach will allow the prediction of future market competition considering the present competition structure and multi-competitor design decisions. Finally, a crowdsourcing-based data collection platform integrating online product data and reviews will be developed for eliciting customer preferences in multi-stage decision making.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究的目的是调查什么产品的客户考虑和他们最终购买使用分层,多维网络为基础的设计方法。基于对工程设计中社会技术互动建模的需求,本研究将设计理论与网络科学相结合,探索三个相互关联的主题:1)考虑产品关联和社会影响的客户偏好建模的两阶段多维网络模型;2)动态网络模型,用于预测多竞争者战略决策的影响;3)知识转移,以证明可推广性和共享数据资源的创建,以造福研究社区。该项目将推进复杂系统的设计理论,并为工程设计中的社会技术互动建模开发定量方法。与企业驱动设计相结合,开发的方法将增强美国工业在不断变化的市场中的竞争力。测试用例包括电动汽车和小型suv设计的主要案例研究和家用产品设计的次要案例研究。该项目还将促进数据科学、网络科学和人工智能方面的学生培训,特别强调代表性不足的群体、女性和本科生的参与。本研究的学术价值体现在四个方面。首先,层次网络模型将顾客的考虑和选择作为不同但又综合的行为进行研究。它确定了考虑和选择阶段背后的独特驱动因素。其次,本研究克服了客户社交网络数据缺失的实际挑战。该解决方案依赖于一种创新的方法,通过将自定义行为者属性模型(ALAAM)与多维客户-产品网络(MCPN)框架协同整合,评估个人偏好如何受到以自我为中心的社会接触的影响。第三,利用时间指数随机图模型(t-ERGM),动态网络建模方法将允许考虑当前竞争结构和多竞争者设计决策的未来市场竞争预测。最后,开发基于众包的数据收集平台,整合在线产品数据和评论,以在多阶段决策中获取客户偏好。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling Multi-Year Customers’ Considerations and Choices in China’s Auto Market Using Two-Stage Bipartite Network Analysis
使用两阶段双向网络分析对中国汽车市场的多年客户考虑因素和选择进行建模
  • DOI:
    10.1007/s11067-021-09526-9
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Bi, Youyi;Qiu, Yunjian;Sha, Zhenghui;Wang, Mingxian;Fu, Yan;Contractor, Noshir;Chen, Wei
  • 通讯作者:
    Chen, Wei
Product Competition Analysis for Engineering Design: A Network Mining Approach
工程设计的产品竞争分析:网络挖掘方法
A Graph Neural Network Approach for Product Relationship Prediction
  • DOI:
    10.1115/detc2021-69462
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Faez Ahmed;Yaxin Cui;Yan Fu;Wei Chen
  • 通讯作者:
    Faez Ahmed;Yaxin Cui;Yan Fu;Wei Chen
Information Retrieval and Survey Design For Two-Stage Customer Preference Modeling
两阶段客户偏好建模的信息检索和调查设计
Bayesian analysis of social influence
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Chen其他文献

Nb-doped layered FeNi phosphide nanosheets for highly efficient overall water splitting under high current densities
掺铌层状 FeNi 磷化物纳米片可在高电流密度下实现高效的整体水分解
  • DOI:
    10.1039/d1ta00372k
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuting Wen;Guangliang Chen;Wei Chen;Xianhui Zhang
  • 通讯作者:
    Xianhui Zhang
Research on the Complexity of Information System Development
信息系统开发复杂性研究
  • DOI:
    10.2991/meici-15.2015.208
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Wei Chen;Yan Zhang
  • 通讯作者:
    Yan Zhang
A real-time multi-constraints obstacle avoidance method based on LiDAR
一种基于LiDAR的实时多约束避障方法
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Chen;Jian Sun;Weishuo Li;Dapeng Zhao
  • 通讯作者:
    Dapeng Zhao
Anionic Ln–MOF with tunable emission for heavy metal ion capture and l-cysteine sensing in serum
具有可调谐发射功能的阴离子 Ln−MOF,用于血清中的重金属离子捕获和 L-半胱氨酸传感
  • DOI:
    10.1039/c9ta13932j
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Tiancheng Sun;Ruiqing Fan;Rui Xiao;Tingfeng Xing;Mingyue Qin;Yaqi Liu;Sue Hao;Wei Chen;Yulin Yang
  • 通讯作者:
    Yulin Yang
Ingenious introduction of aminopropylimidazole to tune the hydrophobic selectivity of dodecyl-bonded stationary phase for environmental organic pollutants
巧妙引入氨基丙基咪唑来调节十二烷基键合固定相对环境有机污染物的疏水选择性
  • DOI:
    10.1016/j.microc.2022.107933
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Yan Wu;Panpan Cao;Yanhao Jiang;Yanjuan Liu;Yuefei Zhang;Wei Chen;Zhengwu Bai;Sheng Tang
  • 通讯作者:
    Sheng Tang

Wei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Chen', 18)}}的其他基金

CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
  • 批准号:
    2334385
  • 财政年份:
    2023
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    2404816
  • 财政年份:
    2023
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
BRITE Fellow: AI-Enabled Discovery and Design of Programmable Material Systems
BRITE 研究员:人工智能支持的可编程材料系统的发现和设计
  • 批准号:
    2227641
  • 财政年份:
    2023
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys
合作研究:多主元合金表面氧化物形成的微观机制
  • 批准号:
    2219489
  • 财政年份:
    2022
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    1945380
  • 财政年份:
    2020
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    1940114
  • 财政年份:
    2019
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Data: HDR: Nanocomposites to Metamaterials: A Knowledge Graph Framework
合作研究:框架:数据:HDR:纳米复合材料到超材料:知识图框架
  • 批准号:
    1835782
  • 财政年份:
    2018
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
RUI: Poly (vinyl alcohol) Thin Film Dewetting by Controlled Directional Drying
RUI:通过受控定向干燥进行聚(乙烯醇)薄膜去湿
  • 批准号:
    1807186
  • 财政年份:
    2018
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
  • 批准号:
    1662435
  • 财政年份:
    2017
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
  • 批准号:
    2337507
  • 财政年份:
    2024
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Polymer Grafted-Nanoparticle Melts through a Hierarchical Computational Approach
合作研究:通过分层计算方法设计聚合物接枝纳米颗粒熔体
  • 批准号:
    2226081
  • 财政年份:
    2023
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Polymer Grafted-Nanoparticle Melts through a Hierarchical Computational Approach
合作研究:通过分层计算方法设计聚合物接枝纳米颗粒熔体
  • 批准号:
    2226898
  • 财政年份:
    2023
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319781
  • 财政年份:
    2023
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
  • 批准号:
    2401851
  • 财政年份:
    2023
  • 资助金额:
    $ 48.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了