High fidelity gates, dynamic nuclear polarization and spin-orbit interaction in GaAs two-electron spin qubits.

GaAs 双电子自旋量子位中的高保真门、动态核极化和自旋轨道相互作用。

基本信息

项目摘要

GaAs based two-electron-spin qubits have demonstrated great promise for quantum computing. An important requirement for further progress is to realize high fidelity gate operations for manipulating individual and multiple qubits. The principles for these control gates are well established, and the demonstrated long coherence time of our qubit compared to the gate duration promises remarkably low error rates. Yet, the gate fidelity has not been optimized or characterized in detail so far. Systematic errors, which can arise, e.g., from poorly calibrated control pulses and coupling to the qubit, are large for current approaches. One goal of this project is to completely eliminate systematic errors from single qubit gates, and to verify the achievable performance. Thus, we are aiming to reach the fidelity limit set by decoherence. Because of the way the quibt is controlled, standard Rabi pulses are not applicable. We will thus first identify suitable control pulses via sufficiently realistic simulations, and then fine tune them on the experiment in such a way that the desired gates are obtained. Reaching this goal is crucial for progress towards scalable quantum information processing, and will also be very useful for conducting more accurate and detailed experiments to understand decoherence in GaAs qubits, for example via dynamical decoupling.For further improvements of qubit performance and based on fundamental interest, it is also important to better understand the device physics. A particular relevant aspect for GaAs (and many other) spin qubits is the hyperfine interaction between electrons and nuclear spins, which, if not treated properly, is the dominating source of dephasing. A second goal of this project is to further refine some of the methods to reduce decoherence due to nuclear spins, and to answer pressing open questions regarding their effectiveness and the underlying mechanisms. Our particular focus will be on so called narrowing procedures, which reduce fluctuations of the nuclear spins via dynamical nuclear polarization and feedback. While these have been quite successful, their effectiveness leaves room for major improvements. We thus plan to improve them towards their fundamental limits, and to explore the nature of the latter. An important topic in this context is the intricate interplay between hyperfine and spin-orbit interaction, which we propose to characterize with advanced and partially novel measurement techniques.While the two components of this project pursue different goals, they are related by significant synergies both in terms of scientific results and practical aspects. Both can be performed on a single sample in one experimental setup, thus maximizing the utilization of existing resources.
基于GaAs的双电子自旋量子比特在量子计算领域有着广阔的应用前景。进一步发展的一个重要要求是实现高保真度的门操作,用于操纵单个和多个量子位。这些控制门的原理已经很好地建立起来,并且与门持续时间相比,我们的量子位的长相干时间保证了非常低的错误率。然而,到目前为止,门保真度还没有被优化或详细表征。可能出现的系统误差,例如,从校准不良的控制脉冲和耦合到量子位,对于当前的方法是大的。该项目的一个目标是完全消除单量子比特门的系统误差,并验证可实现的性能。因此,我们的目标是达到退相干设定的保真度极限。由于quibt的控制方式,标准Rabi脉冲不适用。因此,我们将首先通过足够逼真的模拟来识别合适的控制脉冲,然后在实验中对它们进行微调,以获得所需的门。实现这一目标对于可扩展量子信息处理的进展至关重要,并且对于进行更准确和详细的实验以了解GaAs量子比特中的退相干也非常有用,例如通过动态耦合。为了进一步提高量子比特性能和基于基本兴趣,更好地理解器件物理也很重要。GaAs(和许多其他)自旋量子比特的一个特别相关的方面是电子和核自旋之间的超精细相互作用,如果处理不当,这是失相的主要来源。该项目的第二个目标是进一步改进一些方法,以减少由于核自旋引起的退相干,并回答有关其有效性和潜在机制的紧迫问题。我们将特别关注所谓的窄化过程,通过动态核极化和反馈来减少核自旋的波动。虽然这些措施相当成功,但其效力仍有重大改进的余地。因此,我们计划将它们改进到其基本极限,并探索后者的性质。在这方面的一个重要课题是超精细和自旋-轨道相互作用之间的复杂的相互作用,我们建议用先进的和部分新颖的测量技术来表征。虽然这个项目的两个组成部分追求不同的目标,但它们在科学结果和实践方面都有显着的协同作用。两者都可以在一个实验装置中对单个样品进行,从而最大限度地利用现有资源。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Narrowing of the Overhauser field distribution by feedback-enhanced dynamic nuclear polarization
  • DOI:
    10.1103/physrevb.92.195428
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    S. Tenberg;R. McNeil;S. Rubbert;H. Bluhm
  • 通讯作者:
    S. Tenberg;R. McNeil;S. Rubbert;H. Bluhm
Characterization of S − T + transition dynamics via correlation measurements
通过相关测量表征 SâT 转变动力学
  • DOI:
    10.1103/physrevb.92.125402
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    C. Dickel;S. Foletti;V. Umansky;H. Bluhm
  • 通讯作者:
    H. Bluhm
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Hendrik Bluhm其他文献

Professor Dr. Hendrik Bluhm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Hendrik Bluhm', 18)}}的其他基金

Hyperfine dephasing of electron spin qubits in GaAs quantum dots
GaAs 量子点中电子自旋量子位的超精细相移
  • 批准号:
    265464568
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ultra-high sensitivity scanning SQUID microscopy with dispersive readout
具有色散读数功能的超高灵敏度扫描 SQUID 显微镜
  • 批准号:
    256185976
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
  • 批准号:
    23K26488
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multi-qubit gates mediated by several strongly coupled motional modes
由几种强耦合运动模式介导的多量子位门
  • 批准号:
    2889918
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
  • 批准号:
    23H01795
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Multiqubit Entangling Gates for Solid-State Qubit Systems
LEAPS-MPS:用于固态量子位系统的多量子位纠缠门
  • 批准号:
    2316808
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Design for the exciton-based molecular logic gates for quantum computing
用于量子计算的基于激子的分子逻辑门的设计
  • 批准号:
    22K03480
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Seventeen Towers and Seven Gates: a poetry collection; and Digging in Gallowgate: a critical study
十七楼七门:诗集;
  • 批准号:
    2719675
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploring quantum enhancements from indefinite causality and time-reversing gates
从无限因果关系和时间反转门探索量子增强
  • 批准号:
    2745052
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Implementation of quantum LDPC codes and fault-tolerant logic gates in physical architectures
量子 LDPC 码和容错逻辑门在物理架构中的实现
  • 批准号:
    2755580
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Ameliorating off-target toxicities of CAR T cells by engineering NOT gates
通过设计 NOT 门改善 CAR T 细胞的脱靶毒性
  • 批准号:
    10657356
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Fast Gates
快速门
  • 批准号:
    2749977
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了