Ultra-high sensitivity scanning SQUID microscopy with dispersive readout

具有色散读数功能的超高灵敏度扫描 SQUID 显微镜

基本信息

项目摘要

Scanning SQUID microscopy employs superconducting interference devices (SQUIDs) as magnetic field sensors that are scanned over a sample in order to image or measure its magnetic properties. Traditionally, the sensors are read out via DC measurements of their I-V characteristics. We request support for the development of a novel type of SQUID for scanning experiments employing dispersive readout. The SQUID is shunted with a capacitor so that it forms a nonlinear LC resonator whose resonance frequency varies with the flux through the SQUID and can be measured via reflection of an externally generated microwave signal. Simulations and preliminary experiments indicate that significant improvements in sensitivity and bandwidth can be achieved with this approach. Understanding and optimizing the noise performance of such devices require a detailed study of their nonlinearity arising from the Josephson inductances. This characterization of our devices, which are being obtained from IBM Watson Research Center, is one of the primary goals of this project. Second, the devices will be integrated into a scanning SQUID microscope in a dilution refrigerator. Once completed, this instrument will be used in conjunction with scanning spin resonance and susceptibility measurement techniques to study the origin and dynamics of spins on surfaces. Such surface spins are responsible for flux noise in superconducting devices. This flux noise is a major hurdle for superconducting qubits as it limits the dephasing times and imposes restrictions on their design and operation. Furthermore, it is of fundamental interest to understand how interactions between spins can lead to 1/f noise. The project combines our experience with high sensitivity scanning SQUID microscopy and with high frequency techniques and spin physics gained from spin qubit experiments. In the longer term, it will provide the foundations for a wide range of studies of spin and quantum phenomena.
扫描SQUID显微镜采用超导干涉装置(SQUID)作为磁场传感器,对样品进行扫描,以便成像或测量其磁性。传统上,传感器通过直流测量其I-V特性来读出。我们请求支持开发一种新型的SQUID,用于采用色散读出的扫描实验。SQUID用电容器进行分流,形成一个非线性LC谐振器,其谐振频率随通过SQUID的磁通而变化,可以通过反射外部产生的微波信号来测量。仿真和初步实验表明,该方法可以显著提高灵敏度和带宽。理解和优化这类器件的噪声性能需要详细研究由约瑟夫森电感引起的非线性。我们从IBM沃森研究中心获得的设备的这种特性是这个项目的主要目标之一。其次,这些设备将被集成到一台扫描SQUID显微镜中,放在稀释冰箱中。一旦完成,该仪器将与扫描自旋共振和磁化率测量技术结合使用,研究表面自旋的起源和动力学。这种表面自旋是超导器件中通量噪声的原因。这种通量噪声是超导量子比特的主要障碍,因为它限制了消相时间,并对它们的设计和操作施加了限制。此外,了解自旋之间的相互作用如何导致1/f噪声是基本的兴趣。该项目结合了我们在高灵敏度扫描SQUID显微镜和高频技术以及自旋量子比特实验中获得的自旋物理学方面的经验。从长远来看,它将为自旋和量子现象的广泛研究提供基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Hendrik Bluhm其他文献

Professor Dr. Hendrik Bluhm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Hendrik Bluhm', 18)}}的其他基金

Hyperfine dephasing of electron spin qubits in GaAs quantum dots
GaAs 量子点中电子自旋量子位的超精细相移
  • 批准号:
    265464568
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
High fidelity gates, dynamic nuclear polarization and spin-orbit interaction in GaAs two-electron spin qubits.
GaAs 双电子自旋量子位中的高保真门、动态核极化和自旋轨道相互作用。
  • 批准号:
    240103078
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

TCF7L2突变介导SMAD7信号轴抑制KRAS突变型结直肠癌转移及耐药的分子机制研究
  • 批准号:
    32000555
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
从胰岛素信号传导通路探讨宫内发育迟缓致胰岛素敏感性降低的分子机制
  • 批准号:
    30901614
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
  • 批准号:
    10643456
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
3D Ultra-sensitive Ultrasound Microvessel Imaging for Breast Mass Differentiation
3D 超灵敏超声微血管成像用于乳腺肿块分化
  • 批准号:
    10282891
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
3D Ultra-sensitive Ultrasound Microvessel Imaging for Breast Mass Differentiation
3D 超灵敏超声微血管成像用于乳腺肿块分化
  • 批准号:
    10442667
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Ultra-dense and Fast Ceramic Scintillator for PET
用于 PET 的超致密快速陶瓷闪烁体
  • 批准号:
    10459625
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
MRI: Development of an Ultra-high Sensitivity Scanning SQUID Multi-Function Microscope for Nanoscale Magnetometry, Susceptometry, and Thermometry
MRI:开发用于纳米级磁力测定、电纳测定和测温的超高灵敏度扫描 SQUID 多功能显微镜
  • 批准号:
    1920324
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonmydriatic ultra-widefield fundus photography employing trans-pars-planar illumination
采用透明平面照明的免散瞳超广角眼底摄影
  • 批准号:
    10229588
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Nonmydriatic ultra-widefield fundus photography employing trans-pars-planar illumination
采用透明平面照明的免散瞳超广角眼底摄影
  • 批准号:
    10459424
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
AB Sciex 6500+ QTRAP with Selexion for ultra-sensitive metabolomics and lipidomics
带 Selexion 的 AB Sciex 6500 QTRAP 用于超灵敏代谢组学和脂质组学
  • 批准号:
    9275202
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Breast Cancer Screening with Quantitative Ultra-Fast DCEMRI and Clinical Risk Assessment
使用定量超快速 DCEMRI 进行乳腺癌筛查和临床风险评估
  • 批准号:
    9370492
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Breast Cancer Screening with Quantitative Ultra-Fast DCEMRI and Clinical Risk Assessment
使用定量超快速 DCEMRI 进行乳腺癌筛查和临床风险评估
  • 批准号:
    10174859
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了