CAREER: Uncertainty Quantification and Optimization with Hybrid Models for Molecular-to-Systems Engineering
职业:分子到系统工程的混合模型的不确定性量化和优化
基本信息
- 批准号:1941596
- 负责人:
- 金额:$ 51.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Multiscale modeling combines molecular, material, device, system, and infrastructure scales into holistic approaches to create targeted technologies that meet national and global needs. However, most multiscale frameworks require over-simplification to ensure reasonable computation time, even when using a supercomputer. These over-simplifications introduce uncertainty and can bias analyses and decisions. The investigator seeks to establish new hybrid modeling methodologies to explicitly quantify, propagate, and mitigate uncertainty (i.e., information loss) across vast length and timescales. The investigator predicts that hybrid models will improve safety, enhance performance, reduce environmental impact, and improve efficiency in chemical manufacturing and energy conversion systems through more accurate and predictive multiscale models. Multiscale engineering frameworks enabled by hybrid models can accelerate many domains of science, engineering, and public policy of national importance, including climate change, water scarcity, and advanced manufacturing by enabling more effective top-down and bottom-up integration across interdisciplinary teams of scientists, engineers, and decision-makers. The project enmeshes education and research by leveraging interactive modules and cloud-computing to integrate statistics and computing at all grade levels. In partnership with local educators, the investigator plans to create educational modules aligned with computer science curricula for grades 6 - 12. Educational modules to incorporate statistics and computing across the chemical engineering undergraduate and graduate curricula will also be developed. Whenever possible, research software and educational materials will be distributed online for free to maximize impact.This CAREER program seeks to establish rigorous mathematical frameworks to quantify the information loss and induced epistemic uncertainty from multiscale model reduction. Hybrid models can overcome this challenge by augmenting physics-based equations with data-driven machine learning constructs (e.g., Gaussian Processes) to quantify effects of missing, unknown, or simplified physics. The investigator will address three fundamental research questions to enable scalable hybrid modeling for molecular-to-systems engineering: (1) How to efficiently embed hybrid models in optimization problems, thereby extending optimization under uncertainty paradigms to consider epistemic (i.e., model-form) uncertainty?; (2) How to leverage approximate variational inference techniques to accelerate hybrid model training by orders of magnitude?; and (3) How to compute optimal design of experiments (DOE) for hybrid models? This approach will promote convergence of statistics, machine learning, computational optimization, and chemical engineering. Sparse grids and compressed sensing will be examined to enable tractable optimization under uncertainty including new frameworks for reaction engineering under epistemic uncertainty. Likewise, 10x to 100x faster hybrid model training could enable online control. Generalizing model-based DOE and Bayesian optimization formalism could enable DOE for hybrid models, offering new capabilities to maximize resource-constrained experiments in collaborative teams. Cloud-hosted Jupyter notebooks are proposed to integrate computing and statistics across curricula from graduate to middle school levels, helping to ensure the future U.S. workforce is well-equipped to leverage hybrid models and machine learning advances for decades to come.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多尺度建模将分子、材料、设备、系统和基础设施尺度结合到整体方法中,以创建满足国家和全球需求的目标技术。然而,大多数多尺度框架需要过度简化以确保合理的计算时间,即使在使用超级计算机时也是如此。这些过度简化会带来不确定性,并可能使分析和决策产生偏差。研究者试图建立新的混合建模方法来明确量化,传播和减轻不确定性(即,信息丢失)跨越巨大的长度和时间尺度。研究人员预测,混合模型将提高安全性,提高性能,减少环境影响,并通过更准确和预测性的多尺度模型提高化学制造和能源转换系统的效率。由混合模型支持的多尺度工程框架可以加速许多具有国家重要性的科学,工程和公共政策领域,包括气候变化,水资源短缺和先进制造业,使科学家,工程师和决策者的跨学科团队能够进行更有效的自上而下和自下而上的整合。该项目通过利用交互式模块和云计算将教育和研究结合起来,以整合所有年级的统计和计算。研究人员计划与当地教育工作者合作,为6 - 12年级的学生创建与计算机科学课程相一致的教育模块。还将开发将统计和计算纳入化学工程本科生和研究生课程的教育模块。只要有可能,研究软件和教育材料将在网上免费分发,以最大限度地提高影响力。这个CAREER计划旨在建立严格的数学框架,以量化多尺度模型简化的信息损失和诱导的认知不确定性。混合模型可以通过用数据驱动的机器学习构造(例如,高斯过程)来量化缺失、未知或简化物理的影响。研究人员将解决三个基本研究问题,以实现分子到系统工程的可扩展混合建模:(1)如何有效地将混合模型嵌入优化问题中,从而在不确定性范式下扩展优化,以考虑认知(即,模型形式)不确定性?; (2)如何利用近似变分推理技术来加速混合模型训练的数量级?(3)如何计算混合模型的最优试验设计?这种方法将促进统计学、机器学习、计算优化和化学工程的融合。稀疏网格和压缩传感将被检查,使不确定性下的易处理的优化,包括新的框架下的反应工程认知的不确定性。同样,10倍到100倍的混合模型训练速度可以实现在线控制。推广基于模型的DOE和贝叶斯优化形式主义可以使DOE的混合模型,提供新的能力,以最大限度地提高资源受限的实验在协作团队。该奖项旨在帮助美国未来的劳动力在未来几十年充分利用混合模型和机器学习的进步。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational toolkits for model-based design and optimization
- DOI:10.1016/j.coche.2023.100994
- 发表时间:2024-03
- 期刊:
- 影响因子:6.6
- 作者:Damian Agi;Kyla D. Jones;M. J. Watson;Hailey G Lynch;Molly Dougher;Xinhe Chen;Montana N Carlozo;Alexander W. Dowling
- 通讯作者:Damian Agi;Kyla D. Jones;M. J. Watson;Hailey G Lynch;Molly Dougher;Xinhe Chen;Montana N Carlozo;Alexander W. Dowling
Sequential design of adsorption simulations in metal–organic frameworks
金属有机框架吸附模拟的顺序设计
- DOI:10.1039/d1me00138h
- 发表时间:2021
- 期刊:
- 影响因子:3.6
- 作者:Mukherjee, Krishnendu;Dowling, Alexander W.;Colón, Yamil J.
- 通讯作者:Colón, Yamil J.
DATA: Diafiltration Apparatus for high-Throughput Analysis
- DOI:10.1016/j.memsci.2021.119743
- 发表时间:2022-01
- 期刊:
- 影响因子:9.5
- 作者:J. A. Ouimet;Xinhong Liu;David J. Brown;Elvis A. Eugene;Tylar Popps;Zachary W. Muetzel;A. Dowling;W. Phillip
- 通讯作者:J. A. Ouimet;Xinhong Liu;David J. Brown;Elvis A. Eugene;Tylar Popps;Zachary W. Muetzel;A. Dowling;W. Phillip
Learning and optimization under epistemic uncertainty with Bayesian hybrid models
- DOI:10.1016/j.compchemeng.2023.108430
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Elvis A. Eugene;Kyla D. Jones;Xian Gao;Jialu Wang;A. Dowling
- 通讯作者:Elvis A. Eugene;Kyla D. Jones;Xian Gao;Jialu Wang;A. Dowling
Mathematical Modelling of Reactive Inks for Additive Manufacturing of Charged Membranes
用于带电膜增材制造的活性油墨的数学建模
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Liu, X.;De, R.;Perez, A.;Hoffman, J.R.;Phillip, W.A.;Dowling, A.W.
- 通讯作者:Dowling, A.W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Dowling其他文献
Alexander Dowling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Dowling', 18)}}的其他基金
EAGER GERMINATION: Immersive Training Studio for Technology-Environment-Energy-Water-Society (TEEWS) Grand Challenges
EAGER GERMINATION:技术-环境-能源-水-社会 (TEEWS) 重大挑战的沉浸式培训工作室
- 批准号:
2203670 - 财政年份:2022
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: Efficient Uncertainty Quantification in Turbulent Combustion Simulations: Theory, Algorithms, and Computations
职业:湍流燃烧模拟中的高效不确定性量化:理论、算法和计算
- 批准号:
2143625 - 财政年份:2022
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: Uncertainty Quantification for Quantum Computing Algorithms
职业:量子计算算法的不确定性量化
- 批准号:
2143915 - 财政年份:2022
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
Conference: Support for Early Career Participants in Conference on Uncertainty Quantification for Machine Learning Integrated Physics Modeling (UQ-MLIP)
会议:为机器学习集成物理建模不确定性量化会议 (UQ-MLIP) 的早期职业参与者提供支持
- 批准号:
2227959 - 财政年份:2022
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
CAREER: Forward and Inverse Uncertainty Quantification of Cardiovascular Fluid-Structure Dynamics via Multi-fidelity Physics-Informed Bayesian Geometric Deep Learning
职业:通过多保真物理信息贝叶斯几何深度学习对心血管流体结构动力学进行正向和逆向不确定性量化
- 批准号:
2047127 - 财政年份:2021
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: A Stochastic Framework for Uncertainty Quantification on Complex Geometries: Application to Additive Manufacturing
职业:复杂几何形状不确定性量化的随机框架:在增材制造中的应用
- 批准号:
1942928 - 财政年份:2020
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
CAREER: Fast and Accurate Algorithms for Uncertainty Quantification in Large-Scale Inverse Problems
职业:大规模反问题中不确定性量化的快速准确算法
- 批准号:
1845406 - 财政年份:2019
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: Improving Convective-Scale Weather Prediction through Advanced Bayesian Filtering, Verification, and Uncertainty Quantification
职业:通过高级贝叶斯过滤、验证和不确定性量化改进对流规模天气预报
- 批准号:
1848363 - 财政年份:2019
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
- 批准号:
1653339 - 财政年份:2017
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
- 批准号:
1834710 - 财政年份:2017
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant