CAREER: Learning at the Edge: an Extreme Value Theory for Visual Recognition
职业:边缘学习:视觉识别的极值理论
基本信息
- 批准号:1942151
- 负责人:
- 金额:$ 53.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The brain has the remarkable ability to rapidly and accurately extract meaning from a flood of complex and ever-changing sensory information. A key question is how neuronal systems encode relevant information about the external world, especially with respect to perceptual tasks such as object recognition and categorization. Unlocking this secret would likely change the typical way in which we approach machine learning for computer vision --- a key area of artificial intelligence. This project seeks to answer this question using methods and procedures from psychology and statistics, leading to new AI capabilities that can be transitioned to commercial and government applications where the processing of visual information is a concern. The recognition model produced could have tremendous impact across a number of fields including computer vision, machine learning, neuroscience, psychology, and cognitive science. In addition, the PI will train students at the undergraduate and graduate levels, and organize new workshops relating computer science to human vision.The project’s first technical objective is to work towards a potentially transformative Extreme Value Theory (EVT) for visual recognition. This new theoretical framework will provide solid grounding for vision scientists and AI engineers working on experiments that model the human visual system. It will facilitate both new theoretical analyses of decision making in a visual context, as well as new classification algorithms that are more biologically-consistent in operation. The second technical objective is an experimental assessment of the EVT recognition model. The significant difference in predictions made by EVT and more conventional modeling strategies that rely on central tendency assumptions allows us to formulate testable hypotheses that support psychophysical studies to understand the role of extrema in recognition. The high-level design is three experiments in two different regimes, with humans as the focus of study. This study aims to uncover the principles of decision making that underpin object recognition. The third technical objective is to use the developed theory and the experimental results to create a new class of biologically-consistent machine learning algorithms for decision making that are a measurable advance beyond the state-of-the-art. This includes generative learning algorithms to model the distributions for specific class representations, and discriminative learning algorithms to find the boundaries between classes. This effort will develop probabilistic generative EVT mixture models, as well as probabilistic discriminative one-class, binary, and multi-class EVT classifiers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大脑具有快速准确地从大量复杂且不断变化的感官信息中提取意义的非凡能力。一个关键问题是神经元系统如何编码有关外部世界的相关信息,特别是关于感知任务,如物体识别和分类。解开这个秘密可能会改变我们处理计算机视觉机器学习的典型方式-人工智能的一个关键领域。该项目旨在使用心理学和统计学的方法和程序来回答这个问题,从而产生新的人工智能功能,这些功能可以过渡到商业和政府应用中,其中视觉信息的处理是一个问题。所产生的识别模型可能会对包括计算机视觉、机器学习、神经科学、心理学和认知科学在内的许多领域产生巨大影响。此外,PI还将对本科生和研究生进行培训,并组织新的计算机科学与人类视觉相关的研讨会。该项目的第一个技术目标是致力于视觉识别的潜在变革性极值理论(EVT)。这个新的理论框架将为视觉科学家和人工智能工程师提供坚实的基础,这些工程师正在进行模拟人类视觉系统的实验。它将促进视觉环境中决策的新理论分析,以及在操作中更具生物一致性的新分类算法。第二个技术目标是EVT识别模型的实验评估。EVT和更传统的建模策略,依赖于集中趋势假设的预测的显着差异,使我们能够制定可检验的假设,支持心理物理学研究,以了解识别的极值的作用。高水平设计是两种不同制度下的三个实验,以人类为研究重点。这项研究旨在揭示支撑物体识别的决策原则。 第三个技术目标是使用开发的理论和实验结果来创建一类新的生物学一致的机器学习算法,用于决策,这是超越最先进技术的可衡量的进步。这包括生成学习算法来模拟特定类别表示的分布,以及判别学习算法来找到类别之间的边界。这项工作将开发概率生成EVT混合模型,以及概率判别单类,二进制和多类EVT分类器。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Walter Scheirer其他文献
Walter Scheirer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Walter Scheirer', 18)}}的其他基金
CI-New: Collaborative Research: COVE-Computer Vision Exchange for Data, Annotations and Tools
CI-New:协作研究:COVE-数据、注释和工具的计算机视觉交换
- 批准号:
1629033 - 财政年份:2016
- 资助金额:
$ 53.17万 - 项目类别:
Standard Grant
Group Travel Grant for the Doctoral Consortium at the IEEE Conference on Computer Vision and Pattern Recognition
为参加 IEEE 计算机视觉和模式识别会议的博士联盟提供团体旅行资助
- 批准号:
1136370 - 财政年份:2011
- 资助金额:
$ 53.17万 - 项目类别:
Standard Grant
STTR Phase II: Improving Privacy and Security in Biometrics
STTR 第二阶段:提高生物识别技术的隐私和安全性
- 批准号:
0750485 - 财政年份:2008
- 资助金额:
$ 53.17万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 53.17万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 53.17万 - 项目类别:
Standard Grant
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
- 批准号:
2330154 - 财政年份:2024
- 资助金额:
$ 53.17万 - 项目类别:
Standard Grant
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
- 批准号:
24K14913 - 财政年份:2024
- 资助金额:
$ 53.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
- 批准号:
2340075 - 财政年份:2024
- 资助金额:
$ 53.17万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 53.17万 - 项目类别:
Standard Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
- 批准号:
2340249 - 财政年份:2024
- 资助金额:
$ 53.17万 - 项目类别:
Continuing Grant
CRII: CSR: Adaptive Federated Continuous Learning on Heterogeneous Edge Devices with Unlabeled Data
CRII:CSR:具有未标记数据的异构边缘设备的自适应联合连续学习
- 批准号:
2348279 - 财政年份:2024
- 资助金额:
$ 53.17万 - 项目类别:
Standard Grant
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
- 批准号:
2330155 - 财政年份:2024
- 资助金额:
$ 53.17万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 53.17万 - 项目类别:
Standard Grant