EAGER:Scalable Photonic AI Accelerators Based on Photoelectric Multiplication

EAGER:基于光电倍增的可扩展光子人工智能加速器

基本信息

  • 批准号:
    1946976
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

One of the deepest questions in science is how biological cognition works. Traditionally the purview of neuroscience and psychology, in recent years computer science have shed light on it through the field of 'deep learning'. Deep learning uses computer algorithms called neural networks to perform various tasks-e.g. face recognition, medical diagnosis, automobile driving--that have long been considered difficult for computers, and is transforming many industries including logistics, manufacturing, healthcare, and finance. However, neural networks are very costly to run even on modern computers. To unlock deep learning's full potential, this research will investigate a new concept: Optical Neural Networks. By running neural networks on dedicated optical hardware, there is a potential to increase speed and reduce energy consumption by at least 1000x. This program will study the feasibility of this concept to pave the way for more extensive technology development in the future. If realized, Optical Neural Networks will allow researchers to develop significantly larger, more complex deep learning models that may open up entirely new deep learning applications that are beyond the capabilities of present-day computers. Artificial intelligence (AI) based on deep neural networks (DNNs) has revolutionized a wide range of fields, but at a cost: DNNs are very compute- and power-intensive. Driving the AI revolution has been an exponential growth in the available compute performance, which has enabled the application of DNNs to increasingly complex tasks. However, as Moore's Law runs out of steam, this trend cannot continue for long; therefore, the development of alternative platforms for AI hardware has become especially urgent. This EAGER will study a class of optical neural networks (ONNs) that harness the unique advantages of photonics and promise orders-of-magnitude throughput- and energy-consumption improvements over conventional electronics. Three key tasks are: (i) a system-level architecture study to predict the ONN's performance gains on realistic workloads, (ii) a hardware analysis and feasibility study, and (iii) an investigation into the fundamental limits of ONNs. Research activities include modeling, numerical analysis, and benchmarking.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学中最深层次的问题之一是生物认知是如何工作的。传统上,计算机科学是神经科学和心理学的研究领域,近年来,计算机科学通过“深度学习”领域揭示了这一问题。深度学习使用称为神经网络的计算机算法来执行各种任务--例如人脸识别、医疗诊断、汽车驾驶--长期以来一直被认为是计算机的难点,正在改变包括物流、制造、医疗保健和金融在内的许多行业。然而,即使在现代计算机上运行神经网络也是非常昂贵的。为了充分释放深度学习的潜力,本研究将探索一个新的概念:光学神经网络。通过在专用光学硬件上运行神经网络,有可能将速度提高至少1000倍,并将能耗降低至少1000倍。该计划将研究这一概念的可行性,为未来更广泛的技术开发铺平道路。如果实现,光学神经网络将允许研究人员开发更大、更复杂的深度学习模型,可能会打开全新的深度学习应用,这些应用超出了当今计算机的能力。基于深度神经网络(DNN)的人工智能(AI)给许多领域带来了革命性的变化,但也是有代价的:DNN是非常计算和功率密集型的。推动人工智能革命的是可用计算性能的指数增长,这使得DNN能够应用于日益复杂的任务。然而,随着摩尔定律失去动力,这一趋势不会持续太久;因此,开发AI硬件的替代平台变得尤为迫切。这位热心人士将研究一类光神经网络(ONN),它利用光子学的独特优势,并承诺比传统电子产品的吞吐量和能源消耗提高数量级。三项关键任务是:(I)系统级架构研究,以预测ONN在实际工作负载下的性能收益;(Ii)硬件分析和可行性研究;以及(Iii)ONN基本限制的调查。研究活动包括建模、数值分析和基准。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Digital Optical Neural Networks for Large-Scale Machine Learning
用于大规模机器学习的数字光神经网络
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liane Bernstein, Alexander Sludds
  • 通讯作者:
    Liane Bernstein, Alexander Sludds
Towards Large-Scale Photonic Neural-Network Accelerators
迈向大规模光子神经网络加速器
  • DOI:
    10.1109/iedm19573.2019.8993624
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hamerly, R.;Sludds, A.;Bernstein, L.;Prabhu, M.;Roques-Carmes, C.;Carolan, J.;Yamamoto, Y.;Soljacic, M.;Englund, D.
  • 通讯作者:
    Englund, D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dirk Englund其他文献

Hyperfine Spectroscopy of Isotopically Engineered Group-IV Color Centers in Diamond
钻石中同位素工程 IV 族色心的超精细光谱
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Isaac Benjamin Winston Harris;C. Michaels;Kevin C. Chen;Ryan A. Parker;Michael Titze;Jesús Arjona Martínez;M. Sutula;Ian Christen;Alexander M. Stramma;William Roth;C. Purser;M. H. Appel;Chao Li;Matthew E. Trusheim;Nicola L. Palmer;Matthew L. Markham;E. Bielejec;M. Atatüre;Dirk Englund
  • 通讯作者:
    Dirk Englund
Inference in artificial intelligence with deep optics and photonics
基于深度光学和光子学的人工智能推理
  • DOI:
    10.1038/s41586-020-2973-6
  • 发表时间:
    2020-12-02
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Gordon Wetzstein;Aydogan Ozcan;Sylvain Gigan;Shanhui Fan;Dirk Englund;Marin Soljačić;Cornelia Denz;David A. B. Miller;Demetri Psaltis
  • 通讯作者:
    Demetri Psaltis
「29章 知覚」 田島信元・岩立志津夫・長崎勤(編)新・発達心理学ハンドブック
《第29章知觉》田岛信元、岩立静夫、长崎勉(主编)《发展心理学新手册》
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    藤原正澄;Oliver Neitzke;Tim Schroder;竹内繁樹;Dirk Englund;and Oilver Benson;白井述・山口真美
  • 通讯作者:
    白井述・山口真美
Transfer printing micro-assembly of silicon photonic crystal cavity arrays: beating the fabrication tolerance limit
硅光子晶体腔阵列的转移印刷微组装:突破制造公差极限
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sean P. Bommer;C. Panuski;B. Guilhabert;Zhongyi Xia;J. Smith;Martin D. Dawson;Dirk Englund;M. Strain
  • 通讯作者:
    M. Strain
Programmable photonic circuits
可编程光子电路
  • DOI:
    10.1038/s41586-020-2764-0
  • 发表时间:
    2020-10-07
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Wim Bogaerts;Daniel Pérez;José Capmany;David A. B. Miller;Joyce Poon;Dirk Englund;Francesco Morichetti;Andrea Melloni
  • 通讯作者:
    Andrea Melloni

Dirk Englund的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dirk Englund', 18)}}的其他基金

Collaborative research: Quantum Communication with Loss-Protected Photonic Encoding
合作研究:采用防丢失光子编码的量子通信
  • 批准号:
    1933556
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAISE TAQS: Very Large Scale Integrated Electronics and Phontonics Platform for Scaleable Quantum Information Processing
RAISE TAQS:用于可扩展量子信息处理的超大规模集成电子和光子学平台
  • 批准号:
    1839159
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EFRI ACQUIRE: Scalable Quantum Communications with Error-Corrected Semiconductor Qubits
EFRI ACQUIRE:具有纠错半导体量子位的可扩展量子通信
  • 批准号:
    1641064
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Super-Resolution Microscopy and Quantum Assisted Sensing Using Multifunctional Diamond Nanoprobes
EAGER:使用多功能金刚石纳米探针的超分辨率显微镜和量子辅助传感
  • 批准号:
    1344005
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

CAREER: Multi-Dimensional Photonic Accelerators for Scalable and Efficient Computing
职业:用于可扩展和高效计算的多维光子加速器
  • 批准号:
    2337674
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
SBIR Phase II: Scalable Photonic Crystal Fabrication for Mesoscale Fuel-to-Electricity Conversion
SBIR 第二阶段:用于中尺度燃料到电力转换的可扩展光子晶体制造
  • 批准号:
    2132718
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Cooperative Agreement
Scalable Neuromorphic Photonic Circuits
可扩展的神经形态光子电路
  • 批准号:
    542588-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative Research and Development Grants
RII Track-2 FEC: Laying the Foundation for Scalable Quantum Photonic Technologies
RII Track-2 FEC:为可扩展量子光子技术奠定基础
  • 批准号:
    2217786
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Cooperative Agreement
Scalable Neuromorphic Photonic Circuits
可扩展的神经形态光子电路
  • 批准号:
    542588-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative Research and Development Grants
Zero loss photonic integrated switches for scalable torus mesh network topologies
用于可扩展环面网状网络拓扑的零损耗光子集成交换机
  • 批准号:
    514644-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative Research and Development Grants
Strained germanium photonic crystal membranes for scalable and efficient silicon-based photonic devices
用于可扩展且高效的硅基光子器件的应变锗光子晶体膜
  • 批准号:
    EP/V048732/1
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Scalable Neuromorphic Photonic Circuits
可扩展的神经形态光子电路
  • 批准号:
    542588-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative Research and Development Grants
Fundamental technologies for scalable photonic quantum information processing based on nonlinear optics
基于非线性光学的可扩展光子量子信息处理基础技术
  • 批准号:
    20H01839
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a scalable manufacturing technology for the heterogeneous integration of photonic and electronic devices in microsystems
开发可扩展的制造技术,用于微系统中光子和电子器件的异构集成
  • 批准号:
    2441692
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了