EAGER: Super-Resolution Microscopy and Quantum Assisted Sensing Using Multifunctional Diamond Nanoprobes
EAGER:使用多功能金刚石纳米探针的超分辨率显微镜和量子辅助传感
基本信息
- 批准号:1344005
- 负责人:
- 金额:$ 15.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Overview: The proposed program seeks to develop techniques for local ultra-sensitive electric field measurements in biologically compatible conditions, using quantum metrology based on electron spin dynamics in the nitrogen vacancy center in diamond. While broad impact of such techniques is anticipated, the PI seeks one specific proof-of-concept application: real-time imaging of the electrical activity in large networks of neurons. The program targets scalable production techniques of high-purity diamond nanoprobes with application-driven design, and the application of such probes for high-speed, super-resolution wide-area microscopy technique with ultra-sensitive electric field detection. Research activities include material processing of diamond, optical microscopy, optically detected electron spin resonance measurements, and translation of such techniques to biological systems through extensive collaborations with neuroscientists.Intellectual Merit: The proposed interdisciplinary research relies on the integration of techniques from semiconductor nanofabrication, spin physics in solids, and neuroscience. The PI seeks to show, for the first time, that electron spin-based sensing techniques could enable optical electric field imaging in living cells, and that imaging could be accomplished with a sub-wavelength spatial resolution. Improved electric field sensing technologies in the life sciences could enable profound advances. The proof-of-concept application real-time imaging of the electrical activity in large networks of neurons would represent a major new tool for neuroscience. Moreover, the techniques to be developed could also lead to new research capabilities in a large range of fields that benefit from high-precision optical electric field sensors. The PI seeks these advances through (i) massively parallel readout of more than 100 nitrogen vacancy center spins simultaneously with a 2D detector array, (ii) enhanced electric field detection using nitrogen vacancy centers in high-purity diamond probes with 100 × longer electron spin coherence than in currently available nanocrystals, and (iii) dynamic spin decoupling schemes to extend the spin coherence time. Initial work indicates that the spin-based probes appear to be sufficiently sensitive for optical measurements of neuronal electrical activity across networks of cells with sub-millisecond temporal resolution.Broader Impact:The project will engage multiple student populations in physical sciences research, including 1-2 high school students, 1-2 undergraduate students, and 1-2 Massachusetts Institute of Technology graduate students. Students will have close interaction with research groups spanning electrical engineering, physics, biology, and neuroscience. Broader impact includes: (1) Integration of the research in a new course on quantum information and quantum metrology, and the dissemination of course and experimental projects through a website to other institutions interested in implementing some or all of the curriculum. (2) Effective outreach components through the Minority Introduction to Engineering and Science, in which graduate students and the PI will engage young researchers from underrepresented student populations; engagement of undergraduates through the Undergraduate Research Opportunities Program. (3) Dissemination of the research and educational components through the literature and conferences.
项目概述:拟议的计划旨在使用基于钻石氮空位中心的电子自旋动力学的量子计量学,以生物学兼容条件的局部超敏感电场测量技术开发技术。尽管预计此类技术的广泛影响,但PI寻求一种特定的概念证明应用:大型神经元网络中电活动的实时成像。该计划针对具有应用驱动设计的高纯度钻石纳米探针的可扩展生产技术,以及将这些问题应用于高速,超分辨率的宽面积显微镜技术,具有超敏感的电场检测。 Research activities include material processing of diamond, optical microscopy, optically detected electron spin resonance measurements, and translation of such technologies to biologic systems through extensive collaborations with neuroscientists.Intellectual Merit: The proposed interdisciplinary research relies on the integration of techniques from semiconductor nanofabrication, spin physics in solids, and neuroscience. PI试图首次展示基于电子自旋的灵敏度技术可以在活细胞中进行光学电场成像,并且该成像可以通过下波长的空间分辨率来完成。改善生命科学中的电场灵敏度技术可以实现深刻的进步。大型神经元网络中电活动的概念验证应用程序实时成像将代表神经科学的主要新工具。此外,要开发的技术还可能导致在受益于高精度光学电场传感器的大量领域中的新研究能力。 PI通过(i)(i)通过2D检测器阵列更简单地对100多个氮空位中心旋转进行了大规模平行读数,(ii)使用氮气空位中心在高纯度钻石问题中使用氮气空位中心增强电场检测,该问题与当前可用的nanocrystals和(III III)的旋转时间相比,具有更长的电子旋转的较长的电子旋转相干性。最初的工作表明,基于自旋的探针似乎对具有子毫秒临时分辨率的细胞网络的神经元电动活动的光学测量非常敏感。Broader的影响:该项目将吸引多个学生人群在体育科学研究中,包括1-2名高中生,1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2.学生将与涵盖电气工程,物理,生物学和神经科学的研究小组有密切的互动。更广泛的影响包括:(1)在有关量子信息和量子计量学的新课程中进行研究的整合,以及通过网站通过网站传播课程和实验项目,向有兴趣实施某些或全部课程的其他机构。 (2)通过工程和科学少数派的有效宣传组成部分,研究生和PI将吸引来自代表性不足的学生人群的年轻研究人员;通过本科研究机会计划的本科生的参与。 (3)通过文献和会议传播研究和教育组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dirk Englund其他文献
Hyperfine Spectroscopy of Isotopically Engineered Group-IV Color Centers in Diamond
钻石中同位素工程 IV 族色心的超精细光谱
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Isaac Benjamin Winston Harris;C. Michaels;Kevin C. Chen;Ryan A. Parker;Michael Titze;Jesús Arjona Martínez;M. Sutula;Ian Christen;Alexander M. Stramma;William Roth;C. Purser;M. H. Appel;Chao Li;Matthew E. Trusheim;Nicola L. Palmer;Matthew L. Markham;E. Bielejec;M. Atatüre;Dirk Englund - 通讯作者:
Dirk Englund
Metal-Optic Nanophotonic Modulators in Standard CMOS Technology
标准 CMOS 技术中的金属光学纳米光子调制器
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Elkabbash;Sivan Trajtenberg‐Mills;Isaac Harris;S. Bandyopadhyay;Mohamed I. Ibrahim;Archer Wang;Xibi Chen;Cole J. Brabec;Hasan Z. Yildiz;Ruonan Han;Dirk Englund - 通讯作者:
Dirk Englund
Alignment-Free Coupling to Arrays of Diamond Microdisk Cavities for Scalable Spin-Photon Interfaces
用于可扩展自旋光子接口的金刚石微盘腔阵列的免对准耦合
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Helaman R. Flores;Samuel R. Layton;Dirk Englund;Ryan M. Camacho - 通讯作者:
Ryan M. Camacho
Tunable quantum emitters and coherent modulation on foundry integrated photonics
铸造集成光子学的可调谐量子发射器和相干调制
- DOI:
10.1117/12.3021136 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hugo Larocque;Dashiell L. P. Vitullo;Mustafa Atabey Buyukkaya;Alexander Sludds;Carlos Errando;Camille Papon;S. Harper;Max Tao;Jacques Carolan;Hamed Sattari;Ian Christen;Gregory Choong;Ivan Prieto;Jacopo Leo;Chang;Homa Zarebidaki;Sanjaya Lohani;Brian T. Kirby;Ö. Soykal;Christopher J. K. Richardson;Gerald Leake;Daniel J. Coleman;Moe Soltani;Amir H. Ghadimi;M. Heuck;M. Fanto;E. Waks;Dirk Englund - 通讯作者:
Dirk Englund
A Phase-Optimal Linear Photonic Architecture
相位最优线性光子架构
- DOI:
10.1109/psc57974.2023.10297225 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
R. Hamerly;Alexander Sludds;Dirk Englund - 通讯作者:
Dirk Englund
Dirk Englund的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dirk Englund', 18)}}的其他基金
Collaborative research: Quantum Communication with Loss-Protected Photonic Encoding
合作研究:采用防丢失光子编码的量子通信
- 批准号:
1933556 - 财政年份:2019
- 资助金额:
$ 15.82万 - 项目类别:
Standard Grant
EAGER:Scalable Photonic AI Accelerators Based on Photoelectric Multiplication
EAGER:基于光电倍增的可扩展光子人工智能加速器
- 批准号:
1946976 - 财政年份:2019
- 资助金额:
$ 15.82万 - 项目类别:
Standard Grant
RAISE TAQS: Very Large Scale Integrated Electronics and Phontonics Platform for Scaleable Quantum Information Processing
RAISE TAQS:用于可扩展量子信息处理的超大规模集成电子和光子学平台
- 批准号:
1839159 - 财政年份:2018
- 资助金额:
$ 15.82万 - 项目类别:
Standard Grant
EFRI ACQUIRE: Scalable Quantum Communications with Error-Corrected Semiconductor Qubits
EFRI ACQUIRE:具有纠错半导体量子位的可扩展量子通信
- 批准号:
1641064 - 财政年份:2016
- 资助金额:
$ 15.82万 - 项目类别:
Standard Grant
相似国自然基金
BRPF1 m6A修饰异常通过重塑BCAT1超级增强子介导Setd2缺陷型肾癌支链氨基酸代谢成瘾的机制研究
- 批准号:82372724
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
水稻SUPER WOMAN 3 (SPW3) 基因调控花器官发育的分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
水稻SUPER WOMAN 3(SPW3)基因调控花器官发育的分子机制研究
- 批准号:32100287
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
Triptolide通过调控Super-enhancer抑制抗体产生改善抗体介导的移植肾排斥反应
- 批准号:82100797
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于质谱的Super SILAC结合膜富集技术解析镁离子相关蛋白调控网络在Ⅲ型前列腺炎中的作用机制研究
- 批准号:22164007
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
Quantum-limited super-resolution imaging
量子限制超分辨率成像
- 批准号:
EP/Y029127/1 - 财政年份:2024
- 资助金额:
$ 15.82万 - 项目类别:
Fellowship
SUPer-REsolution non-invasive Muscle measurements with miniaturised magnetIc SEnsors (SUPREMISE)
使用微型磁性传感器 (SUPREMISE) 进行超分辨率非侵入性肌肉测量
- 批准号:
EP/X031950/1 - 财政年份:2024
- 资助金额:
$ 15.82万 - 项目类别:
Fellowship
Super-resolution platform to accelerate biological and molecular research
加速生物和分子研究的超分辨率平台
- 批准号:
LE240100134 - 财政年份:2024
- 资助金额:
$ 15.82万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Developing single-photon super-resolution microscopy
开发单光子超分辨率显微镜
- 批准号:
EP/Y023137/1 - 财政年份:2024
- 资助金额:
$ 15.82万 - 项目类别:
Research Grant
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
- 批准号:
2237309 - 财政年份:2023
- 资助金额:
$ 15.82万 - 项目类别:
Continuing Grant