Collaborative research: Quantum Communication with Loss-Protected Photonic Encoding
合作研究:采用防丢失光子编码的量子通信
基本信息
- 批准号:1933556
- 负责人:
- 金额:$ 26.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical Description: Quantum photonic processors generate, process, and measure quantum states of light on-chip to provide exponential advantages in computation, simulation, and communication. But such processors are also very sensitive to noise and loss. To realize practical quantum photonic processors that can solve useful problems requires quantum error correction which, like classical error correction, incorporates redundancy in order to protect the information from faults in the system. But the realization of these error correcting codes with photons is extremely challenging and requires very efficient photon sources, mode transformations, and single photon nonlinearities. Recent progress in integrated photonics and quantum optics has provided these core individual components, but integrating them into complex fault-tolerant systems remains extremely challenging. This program aims to combine large-scale silicon photonics, quantum emitters, and strongly nonlinear materials to build next generation quantum photonics processors that can protect quantum information using error correction. To address this challenging goal, the principal investigators will combine state-of-the-art quantum dot sources and nonlinearities with foundry based silicon photonics, a scalable and CMOS-compatible photonic platform. New fabrication approaches will be developed to combine these disparate components into a single device structure that can manipulate and interact photons with each other at an unprecedented scale. These devices will operate at the technologically important telecommunications band, and could potentially interfaced with existing infrastructure to develop continental-scale unconditionally secure communication networks. They could also implement next generation quantum algorithms advancing drug design, materials science and big data -- all at a scale where classical machines can no longer keep pace. This program will also contain a significant outreach effort aimed at developing the next generation of quantum engineers by mentoring, new curriculum development, and the development of a youtube channel for quantum engineering. Technical Description: A key goal of this program is a unification of the core individual hardware components into a single system that can efficiently process quantum states of light on a semiconductor chip. These core components include single photon sources, high-fidelity mode transformations, and strong single-photon nonlinearities. By bringing together a combination of complementary expertise in large-scale silicon photonics design, quantum emitter spectroscopy, and nano-fabrication of CMOS control, this proposal will develop systems level solutions to build next generation quantum photonics processors that can perform photonic quantum error correction, the key ingredient for scalable quantum information processing. To generate single photons, the team will utilize high-efficiency single photon sources based on InAs quantum dots. Large-scale Si photonic circuits will apply complex linear mode transformations on generated photons. Finally, cavity-coupled quantum dots in the strong coupling regime will implement single photon nonlinearities to generate two-qubit interactions. Hybrid fabrication techniques will be leveraged to combine different material platforms into a single circuit that can implement photonic error correction for loss, the dominant fault mechanism for photonic qubits. Such loss error correction codes are essential for any scalable quantum information processing application including photonic quantum computers and one-way quantum repeaters that can attain long distance and high speeds simultaneously.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:量子光子处理器生成,过程和测量片上光线的量子状态,以在计算,仿真和通信方面具有指数优势。但是,这样的处理器也对噪声和损失非常敏感。要实现可以解决有用问题的实用量子光子处理器,需要量子误差校正,就像经典的误差校正一样,它结合了冗余,以保护信息免受系统故障的影响。但是,使用光子纠正这些误差代码的实现极具挑战性,需要非常有效的光子源,模式转换和单个光子非线性。集成光子学和量子光学的最新进展提供了这些核心个体组件,但是将它们集成到复杂的耐断层系统中仍然极具挑战性。该程序旨在结合大规模硅光子学,量子发射器和强烈的非线性材料,以构建可以使用误差校正来保护量子信息的下一代量子光子处理器。为了解决这个具有挑战性的目标,首席研究人员将将最先进的量子点源和非线性与基于铸造的硅光子学结合在一起,这是一种可扩展且与CMOS兼容的光子平台。将开发新的制造方法,以将这些不同的组件组合到单个设备结构中,该结构可以以前所未有的规模操纵和相互作用的光子。这些设备将在技术上重要的电信频带上运行,并有可能与现有的基础架构连接以开发大陆规模无条件安全的通信网络。他们还可以实施下一代量子算法,推进药物设计,材料科学和大数据 - 所有这些都无法再保持节奏。该计划还将包含旨在通过指导,新课程开发以及开发Quantum工程渠道来开发下一代量子工程师的大量宣传工作。技术描述:该程序的一个关键目标是将核心个体硬件组件统一到单个系统中,该系统可以有效地处理半导体芯片上的量子状态。这些核心组件包括单个光子源,高保真模式转换和强大的单光子非线性。通过将大规模硅光子学设计,量子发射器光谱和CMOS控制的纳米制作的互补专业知识汇总在一起,该提案将开发系统级别的解决方案,以构建下一代量子光子处理器,这些解决方案可以构建可以执行光子量子误差的关键量子量子误差,这是可缩放量子量子信息处理的关键成分。为了生成单个光子,该团队将基于INAS量子点利用高效率单光子源。大规模的SI光子电路将在生成的光子上应用复杂的线性模式转换。最后,强耦合方案中的腔耦合量子点将实现单个光子非线性以产生两量相互作用。将利用混合制造技术将不同的材料平台组合到单个电路中,该电路可以实施光子误差损失,这是光子Qubits的主要断层机制。此类损失误差校正代码对于任何可扩展的量子信息处理应用程序至关重要,包括光子量子计算机和单向量子中继器,可以同时实现远距离和高速。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识和更广泛影响的评估来通过评估来获得支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Universal linear optics by programmable multimode interference
通过可编程多模干涉实现通用线性光学
- DOI:10.1364/oe.439341
- 发表时间:2021
- 期刊:
- 影响因子:3.8
- 作者:Larocque, Hugo;Englund, Dirk
- 通讯作者:Englund, Dirk
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dirk Englund其他文献
Hyperfine Spectroscopy of Isotopically Engineered Group-IV Color Centers in Diamond
钻石中同位素工程 IV 族色心的超精细光谱
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Isaac Benjamin Winston Harris;C. Michaels;Kevin C. Chen;Ryan A. Parker;Michael Titze;Jesús Arjona Martínez;M. Sutula;Ian Christen;Alexander M. Stramma;William Roth;C. Purser;M. H. Appel;Chao Li;Matthew E. Trusheim;Nicola L. Palmer;Matthew L. Markham;E. Bielejec;M. Atatüre;Dirk Englund - 通讯作者:
Dirk Englund
Metal-Optic Nanophotonic Modulators in Standard CMOS Technology
标准 CMOS 技术中的金属光学纳米光子调制器
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Elkabbash;Sivan Trajtenberg‐Mills;Isaac Harris;S. Bandyopadhyay;Mohamed I. Ibrahim;Archer Wang;Xibi Chen;Cole J. Brabec;Hasan Z. Yildiz;Ruonan Han;Dirk Englund - 通讯作者:
Dirk Englund
Alignment-Free Coupling to Arrays of Diamond Microdisk Cavities for Scalable Spin-Photon Interfaces
用于可扩展自旋光子接口的金刚石微盘腔阵列的免对准耦合
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Helaman R. Flores;Samuel R. Layton;Dirk Englund;Ryan M. Camacho - 通讯作者:
Ryan M. Camacho
Tunable quantum emitters and coherent modulation on foundry integrated photonics
铸造集成光子学的可调谐量子发射器和相干调制
- DOI:
10.1117/12.3021136 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hugo Larocque;Dashiell L. P. Vitullo;Mustafa Atabey Buyukkaya;Alexander Sludds;Carlos Errando;Camille Papon;S. Harper;Max Tao;Jacques Carolan;Hamed Sattari;Ian Christen;Gregory Choong;Ivan Prieto;Jacopo Leo;Chang;Homa Zarebidaki;Sanjaya Lohani;Brian T. Kirby;Ö. Soykal;Christopher J. K. Richardson;Gerald Leake;Daniel J. Coleman;Moe Soltani;Amir H. Ghadimi;M. Heuck;M. Fanto;E. Waks;Dirk Englund - 通讯作者:
Dirk Englund
A Phase-Optimal Linear Photonic Architecture
相位最优线性光子架构
- DOI:
10.1109/psc57974.2023.10297225 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
R. Hamerly;Alexander Sludds;Dirk Englund - 通讯作者:
Dirk Englund
Dirk Englund的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dirk Englund', 18)}}的其他基金
EAGER:Scalable Photonic AI Accelerators Based on Photoelectric Multiplication
EAGER:基于光电倍增的可扩展光子人工智能加速器
- 批准号:
1946976 - 财政年份:2019
- 资助金额:
$ 26.25万 - 项目类别:
Standard Grant
RAISE TAQS: Very Large Scale Integrated Electronics and Phontonics Platform for Scaleable Quantum Information Processing
RAISE TAQS:用于可扩展量子信息处理的超大规模集成电子和光子学平台
- 批准号:
1839159 - 财政年份:2018
- 资助金额:
$ 26.25万 - 项目类别:
Standard Grant
EFRI ACQUIRE: Scalable Quantum Communications with Error-Corrected Semiconductor Qubits
EFRI ACQUIRE:具有纠错半导体量子位的可扩展量子通信
- 批准号:
1641064 - 财政年份:2016
- 资助金额:
$ 26.25万 - 项目类别:
Standard Grant
EAGER: Super-Resolution Microscopy and Quantum Assisted Sensing Using Multifunctional Diamond Nanoprobes
EAGER:使用多功能金刚石纳米探针的超分辨率显微镜和量子辅助传感
- 批准号:
1344005 - 财政年份:2013
- 资助金额:
$ 26.25万 - 项目类别:
Standard Grant
相似国自然基金
量子启发的复合语义视频实例检索技术研究
- 批准号:62372339
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
- 批准号:12305031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
层间耦合强化对转角双层过渡金属硫化物的量子物态调控研究
- 批准号:12304540
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
彭罗斯准晶中强关联量子多体系统的蒙特卡罗研究
- 批准号:12304171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于时域分辨的单个量子点的双激子结合能研究
- 批准号:62305201
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
- 批准号:
2344658 - 财政年份:2024
- 资助金额:
$ 26.25万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 26.25万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336135 - 财政年份:2024
- 资助金额:
$ 26.25万 - 项目类别:
Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
- 批准号:
2344659 - 财政年份:2024
- 资助金额:
$ 26.25万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336136 - 财政年份:2024
- 资助金额:
$ 26.25万 - 项目类别:
Standard Grant