Collaborative research: Quantum Communication with Loss-Protected Photonic Encoding

合作研究:采用防丢失光子编码的量子通信

基本信息

  • 批准号:
    1933556
  • 负责人:
  • 金额:
    $ 26.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Description: Quantum photonic processors generate, process, and measure quantum states of light on-chip to provide exponential advantages in computation, simulation, and communication. But such processors are also very sensitive to noise and loss. To realize practical quantum photonic processors that can solve useful problems requires quantum error correction which, like classical error correction, incorporates redundancy in order to protect the information from faults in the system. But the realization of these error correcting codes with photons is extremely challenging and requires very efficient photon sources, mode transformations, and single photon nonlinearities. Recent progress in integrated photonics and quantum optics has provided these core individual components, but integrating them into complex fault-tolerant systems remains extremely challenging. This program aims to combine large-scale silicon photonics, quantum emitters, and strongly nonlinear materials to build next generation quantum photonics processors that can protect quantum information using error correction. To address this challenging goal, the principal investigators will combine state-of-the-art quantum dot sources and nonlinearities with foundry based silicon photonics, a scalable and CMOS-compatible photonic platform. New fabrication approaches will be developed to combine these disparate components into a single device structure that can manipulate and interact photons with each other at an unprecedented scale. These devices will operate at the technologically important telecommunications band, and could potentially interfaced with existing infrastructure to develop continental-scale unconditionally secure communication networks. They could also implement next generation quantum algorithms advancing drug design, materials science and big data -- all at a scale where classical machines can no longer keep pace. This program will also contain a significant outreach effort aimed at developing the next generation of quantum engineers by mentoring, new curriculum development, and the development of a youtube channel for quantum engineering. Technical Description: A key goal of this program is a unification of the core individual hardware components into a single system that can efficiently process quantum states of light on a semiconductor chip. These core components include single photon sources, high-fidelity mode transformations, and strong single-photon nonlinearities. By bringing together a combination of complementary expertise in large-scale silicon photonics design, quantum emitter spectroscopy, and nano-fabrication of CMOS control, this proposal will develop systems level solutions to build next generation quantum photonics processors that can perform photonic quantum error correction, the key ingredient for scalable quantum information processing. To generate single photons, the team will utilize high-efficiency single photon sources based on InAs quantum dots. Large-scale Si photonic circuits will apply complex linear mode transformations on generated photons. Finally, cavity-coupled quantum dots in the strong coupling regime will implement single photon nonlinearities to generate two-qubit interactions. Hybrid fabrication techniques will be leveraged to combine different material platforms into a single circuit that can implement photonic error correction for loss, the dominant fault mechanism for photonic qubits. Such loss error correction codes are essential for any scalable quantum information processing application including photonic quantum computers and one-way quantum repeaters that can attain long distance and high speeds simultaneously.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:量子光子处理器在芯片上生成、处理和测量光的量子态,以在计算、仿真和通信中提供指数优势。但是这种处理器对噪声和损耗也非常敏感。为了实现能够解决有用问题的实用量子光子处理器,需要量子纠错,其与经典纠错一样,包含冗余以保护信息免受系统中的故障影响。但是用光子实现这些纠错码是极具挑战性的,需要非常有效的光子源、模式变换和单光子非线性。集成光子学和量子光学的最新进展提供了这些核心的单个组件,但将它们集成到复杂的容错系统中仍然极具挑战性。该计划旨在将联合收割机、大规模硅光子学、量子发射器和强非线性材料结合起来,构建下一代量子光子学处理器,该处理器可以使用纠错来保护量子信息。为了实现这一具有挑战性的目标,主要研究人员将联合收割机最先进的量子点源和非线性与基于铸造的硅光子学相结合,这是一个可扩展的CMOS兼容的光子平台。将开发新的制造方法,将这些不同的组件联合收割机组合成一个单一的设备结构,可以操纵和相互作用的光子在一个前所未有的规模。这些设备将在技术上具有重要意义的电信波段上运行,并有可能与现有基础设施连接,以开发大陆规模的无条件安全通信网络。他们还可以实现下一代量子算法,推进药物设计、材料科学和大数据--所有这些都是经典机器无法跟上的。该计划还将包含一个重要的推广工作,旨在通过指导,新课程开发和量子工程youtube频道的开发来培养下一代量子工程师。技术说明:该计划的一个关键目标是将核心的各个硬件组件统一到一个单一的系统中,该系统可以有效地处理半导体芯片上的光量子态。这些核心组件包括单光子源、高保真模式转换和强单光子非线性。通过将大规模硅光子学设计、量子发射光谱学和CMOS控制纳米制造方面的互补专业知识结合起来,该提案将开发系统级解决方案,以构建下一代量子光子学处理器,该处理器可以执行光子量子纠错,这是可扩展量子信息处理的关键因素。为了产生单光子,该团队将利用基于InAs量子点的高效单光子源。大规模Si光子电路将对生成的光子应用复杂的线性模式变换。最后,在强耦合机制中的腔耦合量子点将实现单光子非线性以产生两量子比特相互作用。混合制造技术将被利用来将联合收割机不同的材料平台组合成一个单一的电路,该电路可以实现对损耗的光子纠错,这是光子量子比特的主要故障机制。这种丢失纠错码对于任何可扩展的量子信息处理应用都是必不可少的,包括光子量子计算机和单向量子中继器,可以同时实现长距离和高速。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Universal linear optics by programmable multimode interference
通过可编程多模干涉实现通用线性光学
  • DOI:
    10.1364/oe.439341
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Larocque, Hugo;Englund, Dirk
  • 通讯作者:
    Englund, Dirk
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dirk Englund其他文献

Hyperfine Spectroscopy of Isotopically Engineered Group-IV Color Centers in Diamond
钻石中同位素工程 IV 族色心的超精细光谱
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Isaac Benjamin Winston Harris;C. Michaels;Kevin C. Chen;Ryan A. Parker;Michael Titze;Jesús Arjona Martínez;M. Sutula;Ian Christen;Alexander M. Stramma;William Roth;C. Purser;M. H. Appel;Chao Li;Matthew E. Trusheim;Nicola L. Palmer;Matthew L. Markham;E. Bielejec;M. Atatüre;Dirk Englund
  • 通讯作者:
    Dirk Englund
Inference in artificial intelligence with deep optics and photonics
基于深度光学和光子学的人工智能推理
  • DOI:
    10.1038/s41586-020-2973-6
  • 发表时间:
    2020-12-02
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Gordon Wetzstein;Aydogan Ozcan;Sylvain Gigan;Shanhui Fan;Dirk Englund;Marin Soljačić;Cornelia Denz;David A. B. Miller;Demetri Psaltis
  • 通讯作者:
    Demetri Psaltis
「29章 知覚」 田島信元・岩立志津夫・長崎勤(編)新・発達心理学ハンドブック
《第29章知觉》田岛信元、岩立静夫、长崎勉(主编)《发展心理学新手册》
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    藤原正澄;Oliver Neitzke;Tim Schroder;竹内繁樹;Dirk Englund;and Oilver Benson;白井述・山口真美
  • 通讯作者:
    白井述・山口真美
Transfer printing micro-assembly of silicon photonic crystal cavity arrays: beating the fabrication tolerance limit
硅光子晶体腔阵列的转移印刷微组装:突破制造公差极限
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sean P. Bommer;C. Panuski;B. Guilhabert;Zhongyi Xia;J. Smith;Martin D. Dawson;Dirk Englund;M. Strain
  • 通讯作者:
    M. Strain
Programmable photonic circuits
可编程光子电路
  • DOI:
    10.1038/s41586-020-2764-0
  • 发表时间:
    2020-10-07
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Wim Bogaerts;Daniel Pérez;José Capmany;David A. B. Miller;Joyce Poon;Dirk Englund;Francesco Morichetti;Andrea Melloni
  • 通讯作者:
    Andrea Melloni

Dirk Englund的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dirk Englund', 18)}}的其他基金

EAGER:Scalable Photonic AI Accelerators Based on Photoelectric Multiplication
EAGER:基于光电倍增的可扩展光子人工智能加速器
  • 批准号:
    1946976
  • 财政年份:
    2019
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
RAISE TAQS: Very Large Scale Integrated Electronics and Phontonics Platform for Scaleable Quantum Information Processing
RAISE TAQS:用于可扩展量子信息处理的超大规模集成电子和光子学平台
  • 批准号:
    1839159
  • 财政年份:
    2018
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
EFRI ACQUIRE: Scalable Quantum Communications with Error-Corrected Semiconductor Qubits
EFRI ACQUIRE:具有纠错半导体量子位的可扩展量子通信
  • 批准号:
    1641064
  • 财政年份:
    2016
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
EAGER: Super-Resolution Microscopy and Quantum Assisted Sensing Using Multifunctional Diamond Nanoprobes
EAGER:使用多功能金刚石纳米探针的超分辨率显微镜和量子辅助传感
  • 批准号:
    1344005
  • 财政年份:
    2013
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HIF-1α调控软骨细胞衰老在骨关节炎进展中的作用及机制研究
  • 批准号:
    82371603
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
  • 批准号:
    82371651
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
  • 批准号:
    82371631
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
  • 批准号:
    82371028
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
  • 批准号:
    82371799
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
  • 批准号:
    82371103
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Lienard系统的不变代数曲线、可积性与极限环问题研究
  • 批准号:
    12301200
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
利用CRISPR内源性激活Atoh1转录促进前庭毛细胞再生和功能重建
  • 批准号:
    82371145
  • 批准年份:
    2023
  • 资助金额:
    46.00 万元
  • 项目类别:
    面上项目
CD8+T细胞亚群在抗MDA5抗体阳性皮肌炎中的致病机制研究
  • 批准号:
    82371805
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
  • 批准号:
    2311950
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimizing KTaO3 Superconductivity for Quantum Applications
合作研究:优化 KTaO3 超导性以实现量子应用
  • 批准号:
    2327535
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329938
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Quantum Education by Adaptively Addressing Misconceptions in Virtual Reality
合作研究:通过适应性地解决虚拟现实中的误解来推进量子教育
  • 批准号:
    2302817
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了