A 3D Multiscale Computational Model for Fluid Flow Over Osteocyte in Loaded Bone
负载骨中骨细胞上流体流动的 3D 多尺度计算模型
基本信息
- 批准号:1951531
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bone regulation plays a major role in several bone-related diseases (e.g. osteoporosis) and conditions (e.g. broken bone). Understanding how to improve such scenarios requires increased understanding of bone components including osteocytes, important bone cells that, when sensing force or stress, send out signals that make other cells create or destroy bone. Despite experimental evidence that osteocytes do significantly affect bone regulation, early observations revealed that the stress on the osteocyte needed to initiate bone regulating activities was much greater than the stress bones experience during daily activities. For osteocytes’ bone regulating abilities to be triggered, it appears force must somehow be amplified as it is transferred through the bone down into the microscale regions in and near the osteocytes. While various reasonable explanations for how such force amplification can arise have been suggested, a consensus has not been reached primarily because the complexity of bone has made it difficult to consider all possible factors in any single existing study. Addressing this issue, this study will develop an integrative model to combine multiple components of the osteocyte and its surrounding environment across multiple scales to better understand how everyday forces can be amplified as they travel to the osteocyte. The model will be used to identify which components of the cell are most likely responsible for sensing force. The model can also be used in future studies to consider how to improve force sensing and resulting bone regulation in individuals with osteoporosis, osteoarthritis, leukemia, broken bones, and other bone-related conditions. The goal of this project is to better understand how osteocytes sense forces in vivo (mechanosensation) and how the osteocyte and its microenvironment amplifies stress and strain to levels detectable by osteocytes in vivo by computational modeling and laboratory experiments. This goal will be achieved by introducing a multiscale 3D computational model for the osteocyte-fluid lacuna-canaliculi system and the encasing bone matrix under mechanical loading. The integrative model comprises three parts: a cross-linked viscoelastic fiber-network based “cytosolid model” for force-bearing components in the cell; a lattice-Boltzmann-equation based “fluid model” (intracellular and extracellular) for the remaining cellular and interstitial substances; and a continuum “poroelastic model” for the bone matrix. These three submodels will be integrated through the mutual fluid-structure-interaction (FSI) using the immersed boundary (IB) framework. Model parameters will be obtained from both existing data in literature and collaborators’ in vitro experiments. The three submodels will be verified prior to assembly by separate experimental data and the integrated model will be validated using the ex-vivo experiments. Predictions of the integrated computational model on large-scale CPU-GPU computer clusters will be used to characterize the stress and strain fields, and investigate the stress and strain magnification mechanism, generate new insights into osteocyte mechanosensation and stress/strain amplification, and introduce novel experimental designs to study how disease-related changes may regulate osteocyte mechanotransduction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
骨调节在几种骨相关疾病(如骨质疏松症)和病症(如骨折)中起着重要作用。 了解如何改善这种情况需要更多地了解骨骼成分,包括骨细胞,重要的骨细胞,当感知力或应力时,发出信号,使其他细胞产生或破坏骨骼。 尽管实验证据表明骨细胞确实显着影响骨调节,但早期观察表明,启动骨调节活动所需的骨细胞应力远大于日常活动中骨骼所承受的应力。 为了激发骨细胞的骨调节能力,当力通过骨向下传递到骨细胞内和附近的微尺度区域时,似乎必须以某种方式放大力。 虽然已经提出了各种合理的解释如何产生这种力放大,但尚未达成共识,主要是因为骨骼的复杂性使得难以在任何单一的现有研究中考虑所有可能的因素。 为了解决这个问题,本研究将开发一个综合模型,将骨细胞的多个组成部分及其周围环境在多个尺度上结合起来,以更好地了解日常力量在传递到骨细胞时如何被放大。 该模型将用于识别细胞的哪些组件最有可能负责感知力。 该模型还可用于未来的研究,以考虑如何改善骨质疏松症,骨关节炎,白血病,骨折和其他骨相关疾病患者的力感知和骨调节。该项目的目标是通过计算建模和实验室实验更好地了解骨细胞如何在体内感知力(机械感知)以及骨细胞及其微环境如何将应力和应变放大到骨细胞在体内可检测的水平。这一目标将通过引入一个多尺度的骨细胞-流体陷窝-小管系统和机械载荷下的包裹骨基质的三维计算模型来实现。综合模型包括三个部分:一个交联的粘弹性纤维网络为基础的“细胞固体模型”的细胞中的受力组件;一个格子玻尔兹曼方程为基础的“流体模型”(细胞内和细胞外)的剩余的细胞和间质物质;和一个连续的“多孔弹性模型”的骨基质。这三个子模型将通过相互的流体-结构-相互作用(FSI)使用浸没边界(IB)框架集成。模型参数将从文献中的现有数据和合作者的体外实验中获得。在组装前,将通过单独的实验数据对三个子模型进行验证,并使用离体实验对集成模型进行确认。在大规模CPU-GPU计算机集群上的集成计算模型的预测将用于表征应力和应变场,并研究应力和应变放大机制,产生对骨细胞机械感觉和应力/应变放大的新见解,并引入新的实验设计来研究疾病-该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响进行评估来支持审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling and simulation of interstitial fluid flow around an osteocyte in a lacuno-canalicular network
- DOI:10.1063/5.0085299
- 发表时间:2022-04
- 期刊:
- 影响因子:4.6
- 作者:Luoding Zhu;J. Barber;Robert Zigon;S. Na;H. Yokota
- 通讯作者:Luoding Zhu;J. Barber;Robert Zigon;S. Na;H. Yokota
Simulation of blood flow past distal arteriovenous-graft anastomosis with intimal hyperplasia
内膜增生远端动静脉吻合口血流模拟
- DOI:10.1063/5.0051517
- 发表时间:2021
- 期刊:
- 影响因子:4.6
- 作者:Zhu, Luoding;Sakai, Kaoru
- 通讯作者:Sakai, Kaoru
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luoding Zhu其他文献
Accuracy improvement of the immersed boundary–lattice Boltzmann coupling scheme by iterative force correction
通过迭代力修正提高浸没边界-晶格玻尔兹曼耦合格式的精度
- DOI:
10.1016/j.compfluid.2015.03.024 - 发表时间:
2016-01 - 期刊:
- 影响因子:2.8
- 作者:
Yongguang Cheng;Jiayang Wu;Luoding Zhu;Jiayang Wu - 通讯作者:
Jiayang Wu
Viscous flow past a flexible fibre tethered at its centre point: vortex shedding
- DOI:
10.1017/s002211200700732x - 发表时间:
2007-08 - 期刊:
- 影响因子:3.7
- 作者:
Luoding Zhu - 通讯作者:
Luoding Zhu
Simulation of an inhomogeneous elastic filament falling in a flowing viscous fluid
- DOI:
10.1063/1.2433127 - 发表时间:
2007-01 - 期刊:
- 影响因子:4.6
- 作者:
Luoding Zhu - 通讯作者:
Luoding Zhu
A new criterion of coalescence-induced microbubble detachment in three-dimensional microfluidic channel
三维微流道中聚结诱导微泡脱离的新判据
- DOI:
10.1063/5.0043155 - 发表时间:
2021-04 - 期刊:
- 影响因子:4.6
- 作者:
Rou Chen;Shuiyi Zhou;Likun Zhu;Luoding Zhu;Weiwei Yan - 通讯作者:
Weiwei Yan
An immersed boundary method based on the lattice Boltzmann approach in three dimensions, with application
- DOI:
10.1016/j.camwa.2010.03.022 - 发表时间:
2011-06-01 - 期刊:
- 影响因子:
- 作者:
Luoding Zhu;Guowei He;Shizhao Wang;Laura Miller;Xing Zhang;Qian You;Shiaofen Fang - 通讯作者:
Shiaofen Fang
Luoding Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luoding Zhu', 18)}}的其他基金
Collaborative Research: A New Three-Dimensional Parallel Immersed Boundary Method with Application to Hemodialysis
合作研究:一种新的三维平行浸入边界方法在血液透析中的应用
- 批准号:
1522554 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
A 3D implicit immersed boundary method with application
3D隐式浸没边界方法及其应用
- 批准号:
0713718 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
- 批准号:
2338804 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
增材制造聚合物复合材料断裂的综合多尺度计算和实验研究
- 批准号:
2309845 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2328533 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148646 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CDS&E: Multiscale Computational Modeling of Flow-Induced Mechanical Deformation via Nonlocal Formulations
CDS
- 批准号:
2245343 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: A Multiscale Computational and Experimental Framework to Elucidate the Biomechanics of Infant Growth
职业生涯:阐明婴儿生长生物力学的多尺度计算和实验框架
- 批准号:
2238859 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
A Multiscale Computational Analysis of Defect-assisted Ionic Transport in Plastically Deformed Solid Oxides
塑性变形固体氧化物中缺陷辅助离子输运的多尺度计算分析
- 批准号:
2322675 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Multiscale computational frameworks for integrating large-scale cortical dynamics, connectivity, and behavior
用于集成大规模皮层动力学、连接性和行为的多尺度计算框架
- 批准号:
10840682 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别: