Geometry of Measures and Applications
测量几何与应用
基本信息
- 批准号:1954545
- 负责人:
- 金额:$ 22.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When dipping a frame in a solution of soap suds one produces a thin soap film. Mathematically this object is a constant mean curvature surface. It is closely related to the solution of the Plateau problem, which requires finding a surface of minimal area that spans a given shape in space. This problem is a classical question in the Calculus of Variations. The area is an energy functional, and the expectation is that minimizing it will lead to a stable configuration. In this project the PI addresses questions concerning the minimization of certain energy functionals that take into account noise and small random fluctuations of the phenomena being modeled. The expectation is that this theory will be better suited to reflect actual minimization questions arising in nature. A fundamental feature of the area functional is that it is invariant under rotations of space (if that space is homogeneous). The PI will address geometric and analytic questions in inhomogeneous and crystal-like spaces providing a model that reflects nature more accurately. This project will contribute to US workforce development through training and mentoring of graduate students and post-docs. One of the PI’s goals is to show that “almost minimizers”, which are minimizers to noisy variational problems inherit some of the properties of minimizers of the same functional without noise. This study requires using tools from calculus of variations, harmonic analysis and geometric measure theory. The expectation is that the new ideas developed along the way will find applications in other variational problems with free boundaries. The aim of the project concerning further developing analysis on non-smooth domains is to characterize the geometry of domains in Euclidean space in terms of the properties of solutions to canonical (anisotropic) operators. The project concerning the rectifiability of measures promises to reveal the fine structure of measures defined on crystal-like spaces. The overarching theme of this project brings together tools from Geometric Measure Theory, PDE, Potential Theory, Harmonic Analysis and Calculus of Variations, building bridges between these areas while transforming them by the influx of new ideas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当把镜框浸入肥皂水溶液中时,会产生一层薄薄的肥皂膜。在数学上,这个物体是一个恒定平均曲率的表面。它与Plateau问题的解决方案密切相关,Plateau问题需要找到一个在空间中跨越给定形状的最小面积曲面。该问题是变分学中的一个经典问题。面积是一个能量泛函,期望最小化它将导致稳定的配置。在这个项目中,PI解决了关于最小化某些能量泛函的问题,这些泛函考虑到了被建模现象的噪声和小的随机波动。期望的是,这个理论将更适合于反映实际的最小化问题,在性质上产生的。面积泛函的一个基本特征是它在空间旋转下是不变的(如果空间是齐次的)。PI将解决非均匀和晶体状空间中的几何和分析问题,提供更准确地反映自然的模型。该项目将通过对研究生和博士后的培训和指导,为美国的劳动力发展做出贡献。PI的目标之一是表明,“几乎极小”,这是噪声变分问题的极小继承的一些性质的极小相同的功能没有噪音。这一研究需要借助变分法、调和分析和几何测度理论等工具。我们希望沿着这种方法发展起来的新思想能在其他自由边界的变分问题中得到应用。关于进一步发展非光滑域分析的项目的目的是根据正则(各向异性)算子的解的性质来表征欧几里德空间中域的几何。关于措施的可纠正性的项目有望揭示晶体状空间上定义的措施的精细结构。该项目的首要主题汇集了几何测量理论、偏微分方程、势理论、谐波分析和变分法等工具,在这些领域之间建立桥梁,同时通过新思想的涌入进行改造。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tatiana Toro其他文献
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part II: The large constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao - 通讯作者:
Zihui Zhao
A Generalization Of Reifenberg’s Theorem In $${\mathbb{R}}^3$$
- DOI:
10.1007/s00039-008-0681-8 - 发表时间:
2008-11-06 - 期刊:
- 影响因子:2.500
- 作者:
Guy David;Thierry De Pauw;Tatiana Toro - 通讯作者:
Tatiana Toro
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part I: The small constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao - 通讯作者:
Zihui Zhao
A case of envenomation by the false fer-de-lance snake Leptodeira annulata (Linnaeus, 1758) in the department of La Guajira, Colombia
哥伦比亚拉瓜希拉省发生的一例假长矛蛇 Leptodeira annulata(林奈,1758 年)中毒事件
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Teddy Angarita;Alejandro Montañez;Tatiana Toro;A. Rodríguez - 通讯作者:
A. Rodríguez
Slowly Vanishing Mean Oscillations: Non-uniqueness of Blow-ups in a Two-phase Free Boundary Problem
- DOI:
10.1007/s10013-023-00668-6 - 发表时间:
2023-12-06 - 期刊:
- 影响因子:0.700
- 作者:
Matthew Badger;Max Engelstein;Tatiana Toro - 通讯作者:
Tatiana Toro
Tatiana Toro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tatiana Toro', 18)}}的其他基金
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
- 批准号:
1928930 - 财政年份:2020
- 资助金额:
$ 22.81万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
- 批准号:
1853993 - 财政年份:2019
- 资助金额:
$ 22.81万 - 项目类别:
Standard Grant
REU Site: The Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
- 批准号:
1659138 - 财政年份:2017
- 资助金额:
$ 22.81万 - 项目类别:
Continuing Grant
Geometry of measures and applications
测量几何和应用
- 批准号:
1664867 - 财政年份:2017
- 资助金额:
$ 22.81万 - 项目类别:
Continuing Grant
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
- 批准号:
1440140 - 财政年份:2015
- 资助金额:
$ 22.81万 - 项目类别:
Continuing Grant
Free Boundary Regularity Problems in Harmonic Analysis
调和分析中的自由边界正则性问题
- 批准号:
0600915 - 财政年份:2006
- 资助金额:
$ 22.81万 - 项目类别:
Standard Grant
Geometric Measure Theory and Free Boundary Regularity Problems
几何测度论与自由边界正则问题
- 批准号:
0244834 - 财政年份:2003
- 资助金额:
$ 22.81万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
- 批准号:
2340006 - 财政年份:2024
- 资助金额:
$ 22.81万 - 项目类别:
Continuing Grant
Estimating Risk Measures, with Applications to Finance and Nuclear Safety
评估风险措施,并应用于金融和核安全
- 批准号:
2345330 - 财政年份:2024
- 资助金额:
$ 22.81万 - 项目类别:
Standard Grant
On Optimal Transport-based Statistical Measures for Graph Structured Data and Applications
基于传输的最优图结构化数据统计方法及应用
- 批准号:
23K16939 - 财政年份:2023
- 资助金额:
$ 22.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theory and applications of performance measures
绩效衡量的理论和应用
- 批准号:
22K01586 - 财政年份:2022
- 资助金额:
$ 22.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Single Shock Response Control Mechanism Including All Measures and Its Applications to Astronomical Landing Exploration
包括所有措施的单次冲击响应控制机制及其在天文着陆探索中的应用
- 批准号:
21H01275 - 财政年份:2021
- 资助金额:
$ 22.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Shape Discovery for Convex Bodies: Measures, Invariants, and Applications
凸体的形状发现:测量、不变量和应用
- 批准号:
2005875 - 财政年份:2020
- 资助金额:
$ 22.81万 - 项目类别:
Continuing Grant
Equidistribution, Invariant Measures and Applications
均衡分布、不变测度及其应用
- 批准号:
1930145 - 财政年份:2019
- 资助金额:
$ 22.81万 - 项目类别:
Standard Grant
Absolutely Continuous Invariant Measures for Selectors of Multivalued Maps and Their Applications
多值映射选择器的绝对连续不变测度及其应用
- 批准号:
RGPIN-2015-03708 - 财政年份:2019
- 资助金额:
$ 22.81万 - 项目类别:
Discovery Grants Program - Individual
SBIR Phase II: A tool for estimating objective outcome measures in clinical speech applications
SBIR 第二阶段:用于评估临床语音应用中客观结果测量的工具
- 批准号:
1853247 - 财政年份:2019
- 资助金额:
$ 22.81万 - 项目类别:
Standard Grant
Collaborative Research: Revisiting the Dynamics of Scientific Influence: Measures and Applications
合作研究:重新审视科学影响力的动态:措施和应用
- 批准号:
1829168 - 财政年份:2018
- 资助金额:
$ 22.81万 - 项目类别:
Standard Grant