Geometry of Measures
测量几何
基本信息
- 批准号:9988737
- 负责人:
- 金额:$ 8.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract:The area of analysis called geometric measure theory (GMT) was formallyintroduced in the nineteen sixties, when the book ``Geometric MeasureTheory'' by H. Federer was published. Since the beginning of the century alarge amount of relevant work had been done in this area by many authorsincluding Besicovitch, Carath\'eodory, De Giorgi, Federer himself,Fleming, Marstrand, Morrey, Reifenberg, and Whitney. However it was onlywhen Federer's book was published that it became clear how all theseresults fit naturally together as a cohesive subject. Unfortunately sinceits introduction the subject has been perceived as somewhat mysterious andinaccessible. In this proposal the investigator exploits one of theoutstanding features of the field, its versatility. The PI intends toapply techniques of GMT to study free boundary regularity problems, toanswer questions regarding the existence of good parameterizations forcertain metric spaces and to classify sets supporting ``Lebesgue-type''measures.Free boundary problems arise naturally in physics and engineering. Thefree boundary may appear as the interface between a fluid and the air, orwater and ice. In the filtration problem, which studies how waterfiltrates from a dam made of a porous medium (say earth), the freeboundary separates the wet part from the dry part. The problem ofcharacterizing the regularity of the free boundary has been studied bymany authors, among others Alt, Caffarelli and Friedman. In this proposalthe investigator addresses this question under very weak free boundaryassumptions. By relaxing the regularity hypothesis a broader spectrum ofphysical problems can be covered. The investigator also proposes to studythe structure of sets supporting measures that behave like Lesbeguemeasure on an affine space. In the context of weak notions of regularity,these sets play the role of tangent planes. In particular the problem ofclassifying these sets is of primary importance. The ideas discussed herebelong to a larger project that intends to establish that weak notions ofregularity are for many purposes sufficient to answer basic questions inanalysis and geometry.
翻译后摘要:几何测度理论(GMT)的分析领域正式介绍了在二十世纪六十年代,当书“几何测度理论”由H。Federer出版了。自世纪开始大量的相关工作已经完成了在这一领域的许多authorsincluding贝西科维奇,Carath\'eodory,德乔治,费德勒本人,弗莱明,马斯特兰德,莫里,赖芬贝格,惠特尼。然而,只有当费德勒的书出版时,所有这些结果如何自然地结合在一起成为一个有凝聚力的主题才变得清晰。不幸的是,自从它被介绍以来,这个主题一直被认为有点神秘和难以理解。在这个建议中,调查人员利用了该领域的一个突出特点,即它的多功能性。PI打算应用GMT技术来研究自由边界正则性问题,回答关于某些度量空间是否存在良好参数化的问题,并对支持“勒贝格型”测度的集合进行分类。自由边界可能表现为流体和空气,或水和冰之间的界面。在渗流问题中,研究水如何从由多孔介质(比如土)构成的堤坝中渗透出来,自由边界将湿的部分与干的部分分开。自由边界正则性的刻画问题已被许多作者研究过,其中包括Alt、Caffarelli和Friedman。在这个proposalthe调查员解决这个问题下非常弱的自由boundaryassumptions。通过放松正则性假设,可以涵盖更广泛的物理问题. 调查员还建议研究集的结构支持措施,表现得像Lesbeguembrane仿射空间。在弱正则性概念的背景下,这些集合扮演着切平面的角色。 特别是这些集的分类问题是首要的.这里讨论的思想属于一个更大的项目,旨在建立弱的正则性概念,对于许多目的来说,足以回答分析和几何中的基本问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tatiana Toro其他文献
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part II: The large constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao - 通讯作者:
Zihui Zhao
A Generalization Of Reifenberg’s Theorem In $${\mathbb{R}}^3$$
- DOI:
10.1007/s00039-008-0681-8 - 发表时间:
2008-11-06 - 期刊:
- 影响因子:2.500
- 作者:
Guy David;Thierry De Pauw;Tatiana Toro - 通讯作者:
Tatiana Toro
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part I: The small constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao - 通讯作者:
Zihui Zhao
A case of envenomation by the false fer-de-lance snake Leptodeira annulata (Linnaeus, 1758) in the department of La Guajira, Colombia
哥伦比亚拉瓜希拉省发生的一例假长矛蛇 Leptodeira annulata(林奈,1758 年)中毒事件
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Teddy Angarita;Alejandro Montañez;Tatiana Toro;A. Rodríguez - 通讯作者:
A. Rodríguez
Slowly Vanishing Mean Oscillations: Non-uniqueness of Blow-ups in a Two-phase Free Boundary Problem
- DOI:
10.1007/s10013-023-00668-6 - 发表时间:
2023-12-06 - 期刊:
- 影响因子:0.700
- 作者:
Matthew Badger;Max Engelstein;Tatiana Toro - 通讯作者:
Tatiana Toro
Tatiana Toro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tatiana Toro', 18)}}的其他基金
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
- 批准号:
1928930 - 财政年份:2020
- 资助金额:
$ 8.84万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
- 批准号:
1853993 - 财政年份:2019
- 资助金额:
$ 8.84万 - 项目类别:
Standard Grant
REU Site: The Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
- 批准号:
1659138 - 财政年份:2017
- 资助金额:
$ 8.84万 - 项目类别:
Continuing Grant
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
- 批准号:
1440140 - 财政年份:2015
- 资助金额:
$ 8.84万 - 项目类别:
Continuing Grant
Free Boundary Regularity Problems in Harmonic Analysis
调和分析中的自由边界正则性问题
- 批准号:
0600915 - 财政年份:2006
- 资助金额:
$ 8.84万 - 项目类别:
Standard Grant
Geometric Measure Theory and Free Boundary Regularity Problems
几何测度论与自由边界正则问题
- 批准号:
0244834 - 财政年份:2003
- 资助金额:
$ 8.84万 - 项目类别:
Standard Grant
相似海外基金
Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
- 批准号:
2403698 - 财政年份:2024
- 资助金额:
$ 8.84万 - 项目类别:
Standard Grant
Geometry of Sets and Measures in Euclidean and Non-Euclidean Spaces
欧几里得和非欧空间中的集合和测度的几何
- 批准号:
2154613 - 财政年份:2022
- 资助金额:
$ 8.84万 - 项目类别:
Standard Grant
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
- 批准号:
RGPIN-2015-05968 - 财政年份:2022
- 资助金额:
$ 8.84万 - 项目类别:
Discovery Grants Program - Individual
Rectifiability and Fine Geometry of Sets, Radon Measures, Harmonic Functions, and Temperatures
集合的可整流性和精细几何、氡气测量、调和函数和温度
- 批准号:
2154047 - 财政年份:2022
- 资助金额:
$ 8.84万 - 项目类别:
Standard Grant
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
- 批准号:
RGPIN-2019-03926 - 财政年份:2022
- 资助金额:
$ 8.84万 - 项目类别:
Discovery Grants Program - Individual
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
- 批准号:
RGPIN-2019-03926 - 财政年份:2021
- 资助金额:
$ 8.84万 - 项目类别:
Discovery Grants Program - Individual
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
- 批准号:
RGPIN-2015-05968 - 财政年份:2021
- 资助金额:
$ 8.84万 - 项目类别:
Discovery Grants Program - Individual
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
- 批准号:
RGPIN-2019-03926 - 财政年份:2020
- 资助金额:
$ 8.84万 - 项目类别:
Discovery Grants Program - Individual
Quantifying the influence of tibia and fibula geometry reconstruction errors on musculoskeletal model parameters and measures of cumulative load
量化胫骨和腓骨几何重建误差对肌肉骨骼模型参数和累积载荷测量的影响
- 批准号:
557335-2020 - 财政年份:2020
- 资助金额:
$ 8.84万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements














{{item.name}}会员




