REU Site: The Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
基本信息
- 批准号:1659138
- 负责人:
- 金额:$ 75.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP) is more than a traditional REU program. MSRI-UP identifies talented undergraduates - particularly among racial and ethnic groups underrepresented in mathematics - who display great potential and motivation despite often having had limited opportunities and expertise. It then offers them the research experience, the training and resources, and the long-term mentorship and support necessary to pursue a graduate degree and a career in the mathematical sciences. The program provides: (1) an intense six-week summer research experience, (2) colloquia and professional development workshops, (3) the opportunity to present at national conferences, (4) an introduction to a wide community of peers and mentors; and (5) long-term follow-up and mentorship. Through its unique partnership with the Mathematical Sciences Research Institute, MSRI-UP offers its students access to excellent research facilities, a dynamic scientific atmosphere, constant interaction with internationally recognized mathematicians at all stages of their careers, and a six-week residence at one of the country's top mathematics institutions.MSRI-UP contributes significantly to increasing the number of graduate degrees in mathematics earned by U.S. students, and by members of underserved communities in particular. In the first 10 years of activity, 57 research projects have been conducted by 169 students, 85% from underrepresented groups and 46% women. Of the MSRI-UP alumni who have already graduated from college, 79% went on to graduate programs, almost all of them in the mathematical sciences. This is tremendously significant for a program that targets students with no previous research experience, who may not have seriously considered graduate programs due to lack of access, information, or encouragement. The five Lead Directors have substantial experience creating a rigorous and supportive research environment that emphasizes collaboration and communication, and ensures the active participation and success of every student. Each year, the mathematical activities are directed by a different Research Director who is an established researcher and mentor; this ensures that MSRI-UP engages the diversity of many different fields of mathematics. The structure of the program ensures a constant influx of new perspectives from a rotating set of mentors, and establishes a natural cycle for the training of future leaders in the mathematics community.
数学科学研究所本科课程(MSRI-UP)不仅仅是传统的REU课程。MSRI-UP确定有才华的本科生-特别是在数学中代表性不足的种族和民族群体中-他们表现出巨大的潜力和动力,尽管他们的机会和专业知识往往有限。然后,它为他们提供研究经验,培训和资源,以及追求研究生学位和数学科学职业所需的长期指导和支持。该方案提供:(1)为期六周的暑期密集研究经验,(2)座谈会和专业发展讲习班,(3)在全国会议上提出的机会,(4)介绍给同行和导师的广泛社区;和(5)长期的后续行动和指导。通过与数学科学研究所的独特合作伙伴关系,MSRI-UP为学生提供优秀的研究设施,充满活力的科学氛围,在职业生涯的各个阶段与国际公认的数学家不断互动,和一个为期六周的居住在该国的顶级数学机构之一。MSRI-UP有助于显着增加美国学生获得的数学研究生学位的数量,特别是服务不足的社区成员。在开展活动的头10年里,169名学生开展了57个研究项目,其中85%来自代表性不足的群体,46%为妇女。在已经从大学毕业的MSRI-UP校友中,79%的人继续攻读研究生课程,几乎所有人都在数学科学领域。这对于一个针对没有以前研究经验的学生的计划来说是非常重要的,他们可能因为缺乏访问,信息或鼓励而没有认真考虑研究生课程。五位首席董事拥有丰富的经验,创造了一个严格和支持性的研究环境,强调协作和沟通,并确保每个学生的积极参与和成功。每年,数学活动由不同的研究主任谁是一个既定的研究员和导师指导;这确保了MSRI-UP从事数学的许多不同领域的多样性。该计划的结构确保了新的观点从一组轮换的导师不断涌入,并建立了一个自然的周期,为未来的领导者在数学界的培训。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Generalization of Parking Functions Allowing Backward Movement
允许向后移动的停车功能的概括
- DOI:10.37236/8948
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Christensen, Alex;Harris, Pamela E.;Jones, Zakiya;Loving, Marissa;Ramos Rodríguez, Andrés;Rennie, Joseph;Rojas Kirby, Gordon
- 通讯作者:Rojas Kirby, Gordon
Counting Roots of Polynomials over Z/p2Z
计算 Z/p2Z 上多项式的根
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0.3
- 作者:Hammonds, Trajan;Johnson, Jeremy;Patini, Angela;Walker, Robert M.
- 通讯作者:Walker, Robert M.
On Kostant’s weight q-multiplicity formula for $$\mathfrak {sl}_{4}(\mathbb {C})$$
关于 $$mathfrak {sl}_{4}(mathbb {C})$$ 的 Kostant 权重 q 重数公式
- DOI:10.1007/s00200-020-00454-8
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Garcia, Rebecca E.;Harris, Pamela E.;Loving, Marissa;Martinez, Lucy;Melendez, David;Rennie, Joseph;Rojas Kirby, Gordon;Tinoco, Daniel
- 通讯作者:Tinoco, Daniel
Weight $q$-multiplicities for representations of the exceptional Lie algebra $\mathfrak{g}_2$
特殊李代数$mathfrak{g}_2$表示的权重$q$-重数
- DOI:10.36045/j.bbms.200317
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Cockerham, Jerrell;Gutiérrez González, Melissa;Harris, Pamela E.;Loving, Marissa;Miniño, Amaury V.;Rennie, Joseph;Kirby, Gordon Rojas
- 通讯作者:Kirby, Gordon Rojas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tatiana Toro其他文献
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part II: The large constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao - 通讯作者:
Zihui Zhao
A Generalization Of Reifenberg’s Theorem In $${\mathbb{R}}^3$$
- DOI:
10.1007/s00039-008-0681-8 - 发表时间:
2008-11-06 - 期刊:
- 影响因子:2.500
- 作者:
Guy David;Thierry De Pauw;Tatiana Toro - 通讯作者:
Tatiana Toro
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part I: The small constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao - 通讯作者:
Zihui Zhao
A case of envenomation by the false fer-de-lance snake Leptodeira annulata (Linnaeus, 1758) in the department of La Guajira, Colombia
哥伦比亚拉瓜希拉省发生的一例假长矛蛇 Leptodeira annulata(林奈,1758 年)中毒事件
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Teddy Angarita;Alejandro Montañez;Tatiana Toro;A. Rodríguez - 通讯作者:
A. Rodríguez
Slowly Vanishing Mean Oscillations: Non-uniqueness of Blow-ups in a Two-phase Free Boundary Problem
- DOI:
10.1007/s10013-023-00668-6 - 发表时间:
2023-12-06 - 期刊:
- 影响因子:0.700
- 作者:
Matthew Badger;Max Engelstein;Tatiana Toro - 通讯作者:
Tatiana Toro
Tatiana Toro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tatiana Toro', 18)}}的其他基金
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
- 批准号:
1928930 - 财政年份:2020
- 资助金额:
$ 75.74万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
- 批准号:
1853993 - 财政年份:2019
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
Geometry of measures and applications
测量几何和应用
- 批准号:
1664867 - 财政年份:2017
- 资助金额:
$ 75.74万 - 项目类别:
Continuing Grant
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
- 批准号:
1440140 - 财政年份:2015
- 资助金额:
$ 75.74万 - 项目类别:
Continuing Grant
Free Boundary Regularity Problems in Harmonic Analysis
调和分析中的自由边界正则性问题
- 批准号:
0600915 - 财政年份:2006
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
Geometric Measure Theory and Free Boundary Regularity Problems
几何测度论与自由边界正则问题
- 批准号:
0244834 - 财政年份:2003
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
相似国自然基金
新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
- 批准号:52172255
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
- 批准号:41340011
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Undergraduate Mathematical Science Research at James Madison University
REU 网站:詹姆斯麦迪逊大学本科生数学科学研究
- 批准号:
2349593 - 财政年份:2024
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
REU Site: Mathematical Analysis and Applications
REU 网站:数学分析与应用
- 批准号:
2243808 - 财政年份:2023
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
REU Site: Multi-mentored Mathematical Research Experiences for Undergraduate Students at Towson University
REU 网站:陶森大学本科生多导师数学研究经验
- 批准号:
2149865 - 财政年份:2022
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
REU Site: Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
- 批准号:
2149642 - 财政年份:2022
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
REU Site: Mathematical Biology Team Science (MBioTS) Research Experience for Undergraduates (REU) Program at Clarkson University
REU 网站:克拉克森大学本科生数学生物学团队科学 (MBioTS) 研究经验 (REU) 项目
- 批准号:
2150280 - 财政年份:2022
- 资助金额:
$ 75.74万 - 项目类别:
Continuing Grant
REU Site: Undergraduate Research in the Mathematical Sciences and their Applications
REU 网站:数学科学及其应用的本科研究
- 批准号:
2150094 - 财政年份:2022
- 资助金额:
$ 75.74万 - 项目类别:
Continuing Grant
REU Site: Mathematical, Statistical, and Computational Methods in the Life Sciences
REU 网站:生命科学中的数学、统计和计算方法
- 批准号:
2050133 - 财政年份:2021
- 资助金额:
$ 75.74万 - 项目类别:
Continuing Grant
REU Site: Youngstown State University Beginning Undergraduates Mathematical Research Preparation
REU 网站:扬斯敦州立大学本科生数学研究准备
- 批准号:
2050789 - 财政年份:2021
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
REU Site: Mathematical Modeling in the Sciences
REU 网站:科学中的数学建模
- 批准号:
1950677 - 财政年份:2020
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
REU Site: Mathematical Analysis and Applications
REU 网站:数学分析与应用
- 批准号:
1950102 - 财政年份:2020
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant