Geometry of Measures

测量几何

基本信息

  • 批准号:
    1361823
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

The title "Geometry of Measures" refers to the study of the regularity and the structure of measures (think of length and area and volume as examples of this concept). Problems both in smooth and fractal geometry, as well as questions arising in partial differential equations, fit under this umbrella. Along these lines, one of the projects the principal investigator studies concerns an energy minimization problem, where noise is taken into account. This provides a more realistic model for natural phenomena. The behavior one expects to verify is that, up to first order approximation, energy minimizers in the noisy setting behave exactly the same way as those in the noise-free environment. This project illustrates the idea that mathematical objects that can be well approximated by more regular ones inherit some of their regularity properties. Several applications of this principle are presented. Four main question are addressed in the project. The first concerns the regularity of almost minimizers associated with free-boundary variational problems involving Holder continuous Riemannian metrics, and the aim of studying th question is to understand the structure of the corresponding free boundary. New results concerning the free-boundary regularity for the minimizing problems with free boundary that were studied earlier by Alt-Caffarelli and Alt-Caffarelli-Friedman are expected. In this case the "good approximating objects" are solutions to the Laplacian in the corresponding Riemannian metric. The second question deals with the regularity of measures that are well approximated by flat measures (i.e., constant multiples of Lebesgue measure on planes) in the Wasserstein distance. Two distinct types of problems are considered, one geometric in nature, another that ties in very closely to the theory of weights in harmonic analysis. The third question concerns the existence of good parameterizations for two different types of subsets of Euclidean space. The fourth question ties in with an important branch of the principal investigator's research, namely, the regularity of elliptic measures associated with divergence-form elliptic operators on nonsmooth domains. The cross-pollination between harmonic analysis and geometric measure theory is one of the pillars of the proposed research.
“尺度几何”的标题指的是尺度的规律性和结构的研究(想想长度、面积和体积作为这个概念的例子)。光滑几何和分形几何中的问题,以及偏微分方程中出现的问题,都属于这一范畴。沿着这些思路,首席研究员研究的一个项目涉及能源最小化问题,其中考虑到噪音。这为自然现象提供了一个更现实的模型。我们期望验证的行为是,在一阶近似下,有噪声环境中的能量最小化器与无噪声环境中的能量最小化器的行为完全相同。这个项目说明了一个想法,即可以被更规则的对象很好地近似的数学对象继承了它们的一些规则属性。介绍了这一原理的几种应用。该项目解决了四个主要问题。第一部分是关于涉及Holder连续黎曼度量的自由边界变分问题的几乎极小值的正则性,研究该问题的目的是了解相应的自由边界的结构。对于早先由Alt-Caffarelli和Alt-Caffarelli- friedman研究的具有自由边界的最小化问题的自由边界正则性,期望得到新的结果。在这种情况下,“良好的近似对象”是相应黎曼度规中拉普拉斯量的解。第二个问题处理的是在Wasserstein距离内由平面测度(即平面上的勒贝格测度的常数倍)很好地近似的测度的规律性。考虑了两种不同类型的问题,一种本质上是几何问题,另一种与调和分析中的权重理论密切相关。第三个问题是关于两种不同类型的欧氏空间子集是否存在良好的参数化。第四个问题与首席研究员研究的一个重要分支有关,即与非光滑域上发散型椭圆算子相关的椭圆测度的正则性。谐波分析和几何测度理论之间的交叉授粉是本研究的支柱之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tatiana Toro其他文献

Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part II: The large constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao
  • 通讯作者:
    Zihui Zhao
A Generalization Of Reifenberg’s Theorem In $${\mathbb{R}}^3$$
  • DOI:
    10.1007/s00039-008-0681-8
  • 发表时间:
    2008-11-06
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Guy David;Thierry De Pauw;Tatiana Toro
  • 通讯作者:
    Tatiana Toro
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part I: The small constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao
  • 通讯作者:
    Zihui Zhao
A case of envenomation by the false fer-de-lance snake Leptodeira annulata (Linnaeus, 1758) in the department of La Guajira, Colombia
哥伦比亚拉瓜希拉省发生的一例假长矛蛇 Leptodeira annulata(林奈,1758 年)中毒事件
Slowly Vanishing Mean Oscillations: Non-uniqueness of Blow-ups in a Two-phase Free Boundary Problem
  • DOI:
    10.1007/s10013-023-00668-6
  • 发表时间:
    2023-12-06
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Matthew Badger;Max Engelstein;Tatiana Toro
  • 通讯作者:
    Tatiana Toro

Tatiana Toro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tatiana Toro', 18)}}的其他基金

Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
  • 批准号:
    1928930
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Geometry of Measures and Applications
测量几何与应用
  • 批准号:
    1954545
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
  • 批准号:
    1853993
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
REU Site: The Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
  • 批准号:
    1659138
  • 财政年份:
    2017
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Geometry of measures and applications
测量几何和应用
  • 批准号:
    1664867
  • 财政年份:
    2017
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
  • 批准号:
    1440140
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Geometry of Measures
测量几何
  • 批准号:
    0856687
  • 财政年份:
    2009
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Free Boundary Regularity Problems in Harmonic Analysis
调和分析中的自由边界正则性问题
  • 批准号:
    0600915
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Geometric Measure Theory and Free Boundary Regularity Problems
几何测度论与自由边界正则问题
  • 批准号:
    0244834
  • 财政年份:
    2003
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Geometry of Measures
测量几何
  • 批准号:
    9988737
  • 财政年份:
    2000
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
  • 批准号:
    2403698
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
  • 批准号:
    RGPIN-2015-05968
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Sets and Measures in Euclidean and Non-Euclidean Spaces
欧几里得和非欧空间中的集合和测度的几何
  • 批准号:
    2154613
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Rectifiability and Fine Geometry of Sets, Radon Measures, Harmonic Functions, and Temperatures
集合的可整流性和精细几何、氡气测量、调和函数和温度
  • 批准号:
    2154047
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
  • 批准号:
    RGPIN-2019-03926
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
  • 批准号:
    RGPIN-2019-03926
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
  • 批准号:
    RGPIN-2015-05968
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
  • 批准号:
    RGPIN-2019-03926
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Measures and Applications
测量几何与应用
  • 批准号:
    1954545
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Quantifying the influence of tibia and fibula geometry reconstruction errors on musculoskeletal model parameters and measures of cumulative load
量化胫骨和腓骨几何重建误差对肌肉骨骼模型参数和累积载荷测量的影响
  • 批准号:
    557335-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了