Geometry of Measures
测量几何
基本信息
- 批准号:0856687
- 负责人:
- 金额:$ 60.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractToroThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The theme of this proposal is the strong relationship that exists between the questions of how the geometry of a domain can be recovered from the regularity of its harmonic measure, and free boundary regularity problems. Remarkably the analogies become more apparent when examined under a Geometric Measure Theory (GMT) magnifying glass. The core of this proposal addresses three questions. The first one aims to understand domains in higher dimensional Euclidean spaces in terms of their harmonic measure as it has been done in 2 dimensions with great success. The underlying thesis is that in higher dimensions GMT plays the role that complex analysis does in 2 dimensions. The second question is that of the existence and regularity of minimizers for variational problems stated in terms of H\"older continuous metrics rather than smooth metrics. This problem includes the understanding of the structure of the corresponding free boundary. A by-product of this, is a question concerning the regularity of quasi-minimizers of the functional studied by Alt and Caffarelli. The third question goes back to a long term interest of the PI concerning the existence of good parameterization for subsets of Euclidean space. A remarkable feature is that this last project, which is purely in geometry, was motivated by an attempt to answer a question in potential theory. The cross-pollenization between harmonic analysis and GMT has been clearly beneficial to both areas.The theory of calculus of variations has been the main theoretical tool used in the study of variational problems often concerning energy minimization. Energy minimization methods are used to understand the equilibrium configuration of molecules. The basic idea is that a stable state of a molecular system should correspond to a local minimum of their potential energy. The proposed research provides new outlets for GMT, a field of Mathematics that has contributed greatly to the development of the calculus of variations and geometric analysis. The transformative aspect of this grant is the invigoration of this fundamental area of Mathematics. In the last few years, the number of students going into GMT in the US, has greatly diminished while it has increased in Europe. An important feature of the proposed work is that, while some results have already been obtained, there is great potential for expansion. In particular, we expect the active participation of graduate students and junior mathematicians. The field, which has been one of the pillars upon of which some areas of geometric analysis have been built, offers the theoretical framework to study a wide array of variational problems coming from different venues of science.
该奖项由2009年《美国复苏和再投资法案》(公法111-5)资助。这项提议的主题是如何从调和测度的正则性中恢复区域的几何形状问题与自由边界正则性问题之间存在的密切关系。值得注意的是,当在几何测量理论(GMT)的放大镜下观察时,这种类比变得更加明显。该提案的核心涉及三个问题。第一个目的是根据它们的调和度量来理解高维欧几里德空间中的域,就像在2维空间中所做的那样,并且取得了巨大的成功。其基本论点是,在更高的维度上,GMT扮演着复杂分析在2个维度上所起的作用。第二个问题是关于变分问题的极小元的存在性和正则性,它是用H“较老的连续度量而不是光滑度量来表示的。这个问题包括对相应自由边界结构的理解。由此产生的一个副产品是关于Alt和Caffarelli研究的泛函的拟极小子的正则性的问题。第三个问题回到PI的长期利益,即欧几里德空间的子集是否存在良好的参数化。一个显著的特点是,这个纯几何的最后一个项目的动机是试图回答位势理论中的一个问题。调和分析和GMT之间的交叉极化显然对这两个领域都有好处。变分理论一直是研究经常涉及能量最小化的变分问题的主要理论工具。能量最小化方法被用来理解分子的平衡构型。基本思想是,分子系统的稳定状态应该对应于它们的势能的局部最小值。这项拟议的研究为GMT提供了新的出路,GMT是一个数学领域,对变分和几何分析的发展做出了巨大贡献。这笔赠款的变革性方面是对这一数学基础领域的振兴。在过去的几年里,美国进入格林威治标准时间考试的学生人数大幅减少,而欧洲的学生人数却有所增加。拟议工作的一个重要特点是,虽然已经取得了一些成果,但仍有很大的扩大潜力。特别是,我们期待研究生和初级数学家的积极参与。这一领域一直是几何分析领域的支柱之一,为研究来自不同科学领域的各种变分问题提供了理论框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tatiana Toro其他文献
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part II: The large constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao - 通讯作者:
Zihui Zhao
A Generalization Of Reifenberg’s Theorem In $${\mathbb{R}}^3$$
- DOI:
10.1007/s00039-008-0681-8 - 发表时间:
2008-11-06 - 期刊:
- 影响因子:2.500
- 作者:
Guy David;Thierry De Pauw;Tatiana Toro - 通讯作者:
Tatiana Toro
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part I: The small constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao - 通讯作者:
Zihui Zhao
A case of envenomation by the false fer-de-lance snake Leptodeira annulata (Linnaeus, 1758) in the department of La Guajira, Colombia
哥伦比亚拉瓜希拉省发生的一例假长矛蛇 Leptodeira annulata(林奈,1758 年)中毒事件
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Teddy Angarita;Alejandro Montañez;Tatiana Toro;A. Rodríguez - 通讯作者:
A. Rodríguez
Slowly Vanishing Mean Oscillations: Non-uniqueness of Blow-ups in a Two-phase Free Boundary Problem
- DOI:
10.1007/s10013-023-00668-6 - 发表时间:
2023-12-06 - 期刊:
- 影响因子:0.700
- 作者:
Matthew Badger;Max Engelstein;Tatiana Toro - 通讯作者:
Tatiana Toro
Tatiana Toro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tatiana Toro', 18)}}的其他基金
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
- 批准号:
1928930 - 财政年份:2020
- 资助金额:
$ 60.77万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
- 批准号:
1853993 - 财政年份:2019
- 资助金额:
$ 60.77万 - 项目类别:
Standard Grant
REU Site: The Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
- 批准号:
1659138 - 财政年份:2017
- 资助金额:
$ 60.77万 - 项目类别:
Continuing Grant
Geometry of measures and applications
测量几何和应用
- 批准号:
1664867 - 财政年份:2017
- 资助金额:
$ 60.77万 - 项目类别:
Continuing Grant
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
- 批准号:
1440140 - 财政年份:2015
- 资助金额:
$ 60.77万 - 项目类别:
Continuing Grant
Free Boundary Regularity Problems in Harmonic Analysis
调和分析中的自由边界正则性问题
- 批准号:
0600915 - 财政年份:2006
- 资助金额:
$ 60.77万 - 项目类别:
Standard Grant
Geometric Measure Theory and Free Boundary Regularity Problems
几何测度论与自由边界正则问题
- 批准号:
0244834 - 财政年份:2003
- 资助金额:
$ 60.77万 - 项目类别:
Standard Grant
相似海外基金
Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
- 批准号:
2403698 - 财政年份:2024
- 资助金额:
$ 60.77万 - 项目类别:
Standard Grant
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
- 批准号:
RGPIN-2015-05968 - 财政年份:2022
- 资助金额:
$ 60.77万 - 项目类别:
Discovery Grants Program - Individual
Geometry of Sets and Measures in Euclidean and Non-Euclidean Spaces
欧几里得和非欧空间中的集合和测度的几何
- 批准号:
2154613 - 财政年份:2022
- 资助金额:
$ 60.77万 - 项目类别:
Standard Grant
Rectifiability and Fine Geometry of Sets, Radon Measures, Harmonic Functions, and Temperatures
集合的可整流性和精细几何、氡气测量、调和函数和温度
- 批准号:
2154047 - 财政年份:2022
- 资助金额:
$ 60.77万 - 项目类别:
Standard Grant
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
- 批准号:
RGPIN-2019-03926 - 财政年份:2022
- 资助金额:
$ 60.77万 - 项目类别:
Discovery Grants Program - Individual
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
- 批准号:
RGPIN-2019-03926 - 财政年份:2021
- 资助金额:
$ 60.77万 - 项目类别:
Discovery Grants Program - Individual
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
- 批准号:
RGPIN-2015-05968 - 财政年份:2021
- 资助金额:
$ 60.77万 - 项目类别:
Discovery Grants Program - Individual
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
- 批准号:
RGPIN-2019-03926 - 财政年份:2020
- 资助金额:
$ 60.77万 - 项目类别:
Discovery Grants Program - Individual
Quantifying the influence of tibia and fibula geometry reconstruction errors on musculoskeletal model parameters and measures of cumulative load
量化胫骨和腓骨几何重建误差对肌肉骨骼模型参数和累积载荷测量的影响
- 批准号:
557335-2020 - 财政年份:2020
- 资助金额:
$ 60.77万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements