Trace Formulas, L-Functions, and Automorphic and Arithmetic Periods
迹公式、L 函数以及自守和算术周期
基本信息
- 批准号:2000533
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main objective of this project is to study the relation between L-functions and various periods, both automorphic and arithmetic. The L-function is an important object in the modern study of questions in number theory, in particular, solving Diophantine equations like the famous Birch and Swinnerton-Dyer conjecture and its generalizations. L-functions are also crucial in the study of representations of transformation groups, which have an important role in physics. The work is expected to provide important new understanding of these relations in higher dimensional cases. The investigator plans to organize workshops related to the project, which will provide students, postdocs, and other researchers in the area substantial opportunities for instruction, discussion, and collaboration.The scope of this project consists of four parts. In the first part, the investigator will use some new techniques in the study of trace formulas to solve questions concerning the relation between L-functions and automorphic periods -- those periods obtained by integrating automorphic forms along certain subgroups. The second part aims to extend some explicit formulas of automorphic periods, known as the Ichino-Ikeda formula, to more general cases by removing certain assumptions that are usually hard to check. The third part aims to provide unconditional evidence toward the Beilinson-Bloch conjecture on the relation between L-functions and Chow groups, which will generalize parallel results in the Birch and Swinnerton-Dyer conjecture to higher dimensional cases. In the last part, the investigator plans to adopt a new approach via a relative trace formula to obtain variants of the arithmetic triple product formula concerning the height of certain cycles on a product of three modular elliptic curves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要目标是研究 L 函数与各个周期(自守和算术)之间的关系。 L 函数是现代数论问题研究的重要对象,特别是求解丢番图方程(如著名的 Birch 和 Swinnerton-Dyer 猜想及其推广)的重要对象。 L 函数在变换群表示的研究中也至关重要,变换群在物理学中具有重要作用。这项工作预计将为高维情况下这些关系提供重要的新理解。研究者计划组织与该项目相关的研讨会,这将为该领域的学生、博士后和其他研究人员提供大量的指导、讨论和合作的机会。该项目的范围由四个部分组成。在第一部分中,研究者将在迹公式研究中使用一些新技术来解决有关L函数和自同构周期(通过沿某些子群整合自同构形式获得的周期)之间的关系的问题。第二部分旨在通过删除某些通常难以检查的假设,将一些显式的自守周期公式(称为 Ichino-Ikeda 公式)扩展到更一般的情况。第三部分旨在为L函数与Chow群之间的关系的Beilinson-Bloch猜想提供无条件证据,这将Birch和Swinnerton-Dyer猜想的并行结果推广到更高维的情况。在最后一部分中,研究人员计划采用一种新方法,通过相对迹公式来获得关于三个模椭圆曲线乘积上某些周期的高度的算术三重乘积公式的变体。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Congling Qiu其他文献
Linearity on ordinary Siegel moduli schemes and joint unlikely almost intersections
普通西格尔模方案的线性和不太可能相交的联合
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Congling Qiu - 通讯作者:
Congling Qiu
Vanishing results for the modified diagonal cycles II: Shimura curves
修改后的对角线循环 II 的消失结果:Shimura 曲线
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Congling Qiu;Wei Zhang - 通讯作者:
Wei Zhang
The Gross–Zagier–Zhang formula over function fields
函数域上的 Gross–Zagier–Zhang 公式
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.4
- 作者:
Congling Qiu - 通讯作者:
Congling Qiu
The Manin–Mumford conjecture and the
Tate–Voloch conjecture for a product of Siegel moduli spaces
马宁-芒福德猜想和
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Congling Qiu - 通讯作者:
Congling Qiu
Congling Qiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
New developments in the anticyclotomic Iwasawa theory and special value formulas on L-functions
反圆剖分Iwasawa理论和L函数特殊值公式的新进展
- 批准号:
22H00096 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Quantum probabilistic study of parametrized trace formulas and L-functions
参数化迹公式和 L 函数的量子概率研究
- 批准号:
20K14298 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of trace formulas, automorphic forms and zeta functions by using pseudo-cusp forms
利用伪尖点形式研究迹公式、自守形式和zeta函数
- 批准号:
17K05178 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Resolvent type trace formulas, automorphic forms and zeta functions
解析型微量公式、自同构形式和 zeta 函数
- 批准号:
26400017 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Explicit formulas of $p$-adic spherical functions and their applications
$p$-adic球函数的显式公式及其应用
- 批准号:
24540031 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of automorphic forms and zeta functions by using generalized or refined resolvent type trace formulas
使用广义或精化的解析型迹公式研究自同构形式和 zeta 函数
- 批准号:
23540020 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Decompositions for multivariable Schur-class functions, Christoffel-Darboux type formulas, and related problems
多变量 Schur 类函数、Christoffel-Darboux 类型公式的分解以及相关问题
- 批准号:
0901628 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Research on density theorems and invariants with zeta functions and trace formulas
利用zeta函数和迹公式研究密度定理和不变量
- 批准号:
20740027 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Green functions and relative trace formulas
格林函数和相对迹公式
- 批准号:
18540049 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of zeta functions and duality - "infinite sum=infinite product" based on the trace formulas viewpoint
zeta函数与对偶性研究——基于微量公式观点的“无穷和=无穷积”
- 批准号:
15340012 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)