Porous Organic Solid-State Materials for Energy Storage

用于储能的多孔有机固态材料

基本信息

  • 批准号:
    2002634
  • 负责人:
  • 金额:
    $ 52.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Part 1. Non-technical SummaryThis project, which is supported by the Solid State and Materials Chemistry Program in the Division of Materials Research at NSF, combines research and educational objectives to create new types of organic materials to store electrical energy. Energy storage materials, as part of energy storage devices, are critical components in a wide variety of electronic and renewable energy production technologies. Electrochemical processes underpin most electrical energy storage systems such as batteries and capacitors. Organic materials offer unique advantages: they are readily available, and they can be designed and modified to have the required properties. In this project, researchers from Columbia University demonstrate that simple organic dye molecules can be used as tunable building blocks to form these types of energy storage materials. The research provides a fundamental understanding of the relationship between structure and properties relevant for energy storage performance. Insights from this research, may eventually address a key objective in the energy storage field, namely to design materials that combine the high energy density of batteries with the long cycle life and short charging times of capacitors. Additionally, as part of this project a unique hands-on curriculum is developed that focuses on alternative energy and is designed for at-risk students in the local area. Through this outreach program, these students get immediate exposure to the engineering behind solar energy, which will help propel their interest and understanding within STEM.Part 2. Technical SummaryThis project contains three highly integrated Research Objectives: (1) Tuning molecular subunits to control electrochemical behavior; (2) Testing energy storage performances to enhance mechanistic understanding; and (3) Pushing the boundaries of organic materials for improved energy storage related properties. The combination of expertise, working in concert, enables the design, synthesis and study of organic electrode materials in a feedback loop that fosters a holistic understanding and engenders discovery of new properties. This project, which is supported by the Solid State and Materials Chemistry Program in the Division of Materials Research at NSF, creates a new family of organic electron-accepting (n-type) materials for energy storage composed of perylene diimide molecular units covalently linked into three-dimensional architectures using a variety of linkers. The research tests the hypothesis that the structure and electronic properties of perylene diimide architectures can be controlled by coupling complementary molecular building blocks whose chemical characteristics can be used to tune the electrochemical performances of the materials. Additionally, the researchers aim to increase the number of scientists as well as bridge related fields with science through education programs. The coordinated education effort spans K-8 outreach, curriculum development, and research training for undergraduate, graduate, and post-doctoral scientists. As part of this project a unique hands-on curriculum is developed that focuses on alternative energy and is designed for at-risk students in the local area. Through this outreach program, these students get immediate exposure to the engineering behind solar energy, which will help propel their interest and understanding within STEM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分。该项目由美国国家科学基金会材料研究部固态和材料化学项目支持,将研究和教育目标结合起来,创造新型有机材料来储存电能。储能材料作为储能装置的一部分,是各种电子和可再生能源生产技术的关键组成部分。电化学过程是大多数电能存储系统(如电池和电容器)的基础。有机材料具有独特的优势:它们容易获得,并且可以设计和修改以具有所需的性能。在这个项目中,来自哥伦比亚大学的研究人员证明,简单的有机染料分子可以作为可调的构建块来形成这些类型的储能材料。该研究对与储能性能相关的结构和性能之间的关系提供了基本的理解。这项研究的见解可能最终解决能源存储领域的一个关键目标,即设计将电池的高能量密度与电容器的长循环寿命和短充电时间结合起来的材料。此外,作为该项目的一部分,我们还开发了一个独特的实践课程,重点关注替代能源,并为当地有风险的学生设计。通过这个外展项目,这些学生可以直接接触到太阳能背后的工程,这将有助于提高他们对STEM的兴趣和理解。第2部分。本项目包含三个高度集成的研究目标:(1)调节分子亚基以控制电化学行为;(2)测试储能性能,增强对机理的理解;(3)推动有机材料的边界,以改善储能相关性能。专业知识的结合,协同工作,使有机电极材料的设计,合成和研究在一个反馈回路中,促进了整体的理解,并产生了新特性的发现。该项目由美国国家科学基金会材料研究部固态和材料化学项目支持,创建了一个新的有机电子接受(n型)材料家族,用于储能,该材料由苝二亚胺分子单元组成,使用各种连接剂共价连接成三维结构。该研究验证了一个假设,即苝二亚胺结构的结构和电子性能可以通过耦合互补的分子构建块来控制,这些分子构建块的化学特性可以用来调节材料的电化学性能。此外,研究人员的目标是增加科学家的数量,并通过教育项目将相关领域与科学联系起来。协调的教育工作涵盖了K-8扩展,课程开发以及本科生,研究生和博士后科学家的研究培训。作为这个项目的一部分,我们开发了一个独特的实践课程,重点是替代能源,并为当地有风险的学生设计。通过这个外展项目,这些学生可以直接接触到太阳能背后的工程,这将有助于提高他们对STEM的兴趣和理解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Performance Organic Electronic Materials by Contorting Perylene Diimides
  • DOI:
    10.1021/jacs.1c11544
  • 发表时间:
    2021-12-23
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Schaack, Cedric;Evans, Austin M.;Nuckolls, Colin
  • 通讯作者:
    Nuckolls, Colin
Iterative Synthesis of Contorted Macromolecular Ladders for Fast-Charging and Long-Life Lithium Batteries
High-performance organic pseudocapacitors via molecular contortion
  • DOI:
    10.1038/s41563-021-00954-z
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Russell, Jake C.;Posey, Victoria A.;Peurifoy, Samuel R.
  • 通讯作者:
    Peurifoy, Samuel R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Nuckolls其他文献

Reversible excited state electron transfer in an acceptor–acceptor hetero dyad
受体-受体杂二聚体中的可逆激发态电子转移
  • DOI:
    10.1039/d5sc01397f
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Jesper Dahl Jensen;Shayan Louie;Yanmei He;Junsheng Chen;Colin Nuckolls;Bo W. Laursen
  • 通讯作者:
    Bo W. Laursen
Chemical principles of single-molecule electronics
单分子电子学的化学原理
  • DOI:
    10.1038/natrevmats.2016.2
  • 发表时间:
    2016-02-23
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Timothy A. Su;Madhav Neupane;Michael L. Steigerwald;Latha Venkataraman;Colin Nuckolls
  • 通讯作者:
    Colin Nuckolls
Contorted Polycyclic Aromatics
  • DOI:
    10.1021/ar500355d
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
  • 作者:
    Melissa Ball;Yu Zhong;Ying Wu;Christine Schenck;Fay Ng;Michael Steigerwald;Shengxiong Xiao;Colin Nuckolls
  • 通讯作者:
    Colin Nuckolls
A single-molecule blueprint for synthesis
用于合成的单分子蓝图
  • DOI:
    10.1038/s41570-021-00316-y
  • 发表时间:
    2021-08-25
  • 期刊:
  • 影响因子:
    51.700
  • 作者:
    Ilana Stone;Rachel L. Starr;Yaping Zang;Colin Nuckolls;Michael L. Steigerwald;Tristan H. Lambert;Xavier Roy;Latha Venkataraman
  • 通讯作者:
    Latha Venkataraman
High Temporal- and Spatial-Resolution Studies of a Helix-to-Coil Transition that Controls the Switching Mechanism of a Riboswitch
  • DOI:
    10.1016/j.bpj.2017.11.2402
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Jason Hon;Nathan S. Daly;Scott M. Trocchia;Colin Nuckolls;Kenneth L. Shepard;Ruben L. Gonzalez
  • 通讯作者:
    Ruben L. Gonzalez

Colin Nuckolls的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Nuckolls', 18)}}的其他基金

Chiral Electronic Materials
手性电子材料
  • 批准号:
    2304946
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Ultra-Long Polyradicaloid Wires for Single-Molecule Electronics
用于单分子电子学的超长多自由基线
  • 批准号:
    2204008
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Tuning Graphene Nanoribbon Properties with Non-hexagonal Rings
合作研究:用非六角环调节石墨烯纳米带性能
  • 批准号:
    2203660
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Columbia University MRSEC on Precision-Assembled Quantum Materials
哥伦比亚大学精密组装量子材料 MRSEC
  • 批准号:
    2011738
  • 财政年份:
    2020
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Cooperative Agreement
Molecular Conductance and Induced Reactivity in Group 14 Constructs
第 14 组构建体中的分子电导和诱导反应性
  • 批准号:
    1764256
  • 财政年份:
    2018
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Functional, Atomically-Defined Nanowires and Nanoribbons of Silicon
功能性、原子定义的纳米线和硅纳米带
  • 批准号:
    1404922
  • 财政年份:
    2014
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Acquisition of a 400 MHz Cyber-Enabled Nuclear Magnetic Resonance Spectrometer for Teaching and Research
采购 400 MHz 网络核磁共振波谱仪用于教学和研究
  • 批准号:
    0840451
  • 财政年份:
    2009
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
NIRT: Molecular electronic devices with carbon-based electrodes on active substrates
NIRT:活性基底上具有碳基电极的分子电子器件
  • 批准号:
    0707748
  • 财政年份:
    2007
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
SGER: High Performance Printable Organic Semiconductors
SGER:高性能可印刷有机半导体
  • 批准号:
    0408059
  • 财政年份:
    2004
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
CAREER: Functional Nanoscale Architectures by Self-Assembly
职业:通过自组装实现功能性纳米级架构
  • 批准号:
    0237860
  • 财政年份:
    2003
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Rigid Planar Organic Molecules for Low Threshold Organic Solid-State Lasers
用于低阈值有机固态激光器的刚性平面有机分子
  • 批准号:
    23KK0099
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Process intensification of high-solids anaerobic digestion of organic solid waste
有机固废高固厌氧消化工艺强化
  • 批准号:
    570464-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Alliance Grants
Moldable, self-healing, highly conductive organic co-crystalline solid electrolytes for safer lithium ion batteries
可成型、自修复、高导电性有机共晶固体电解质,用于更安全的锂离子电池
  • 批准号:
    2138432
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Electrochemically assisted biotechnologies for resource recovery from organic fraction of municipal solid waste
电化学辅助生物技术从城市固体废物的有机部分中进行资源回收
  • 批准号:
    RGPIN-2017-05608
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced anaerobic biotechnologies for transformation of municipal solid organic waste to (bio)chemicals
将城市固体有机废物转化为(生物)化学品的先进厌氧生物技术
  • 批准号:
    RGPIN-2020-06315
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Discovery Grants Program - Individual
Self-Healing Organic-Inorganic Hybrid Polymer Hosts for Solid-State Triplet-Triplet Annihilation Upconversion
用于固态三重态-三重态湮没上转换的自修复有机-无机杂化聚合物主体
  • 批准号:
    2738200
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Studentship
Thermal conversion of biomass and municipal solid wastes: Understanding the effect of organic and inorganic components on process performance
生物质和城市固体废物的热转化:了解有机和无机成分对工艺性能的影响
  • 批准号:
    RGPIN-2019-04583
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Discovery Grants Program - Individual
Catalytic Organic Solid Wastes Upgrading Using Natural Gas for Valuable Commodities Production
利用天然气催化有机固体废物升级生产有价值的商品
  • 批准号:
    RGPIN-2019-05322
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Discovery Grants Program - Individual
Catalytic Organic Solid Wastes Valorization Using Natural Gas
利用天然气催化有机固体废物增值
  • 批准号:
    565222-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Alliance Grants
Metal organic framework-based composite solid-state electrolyte for lithium metal batteries
用于锂金属电池的金属有机骨架基复合固态电解质
  • 批准号:
    556344-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了