Functional, Atomically-Defined Nanowires and Nanoribbons of Silicon

功能性、原子定义的纳米线和硅纳米带

基本信息

  • 批准号:
    1404922
  • 负责人:
  • 金额:
    $ 81.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Colin Nuckolls, James Leighton and Latha Venkataraman, all of Columbia University, are funded by the Macromolecular, Supramolecular and Nanochemistry program in the Division of Chemistry for research to develop methods to design, create, and study single molecule chains and ribbons of silicon atoms. Pure silicon is, of course, widely used in the electronics and information technology industry and is highly valued for its properties as a semiconductor. Its semiconductor nature is the result of molecular and electronic properties that arise at the atomic level. Changes in silicon's electrical properties have been noted as the size of silicon-based devices, such as computer chips and information storage media, become smaller. The investigators are using precise molecular construction techniques to create highly electrically conductive forms of silicon with specific shapes and properties that have never before been studied. In particular, they are looking at tiny ribbons and wires of silicon that hold promise for the development of future electronic devices. This collaborative project is making an explicit connection between the properties of bulk silicon, the bedrock of information technology, and molecular forms of silicon, and is, thus, having a broad impact on the semiconductor industry. This project is having a further broad impact through a coordinated effort that spans K-8 outreach, curriculum development, and research training for undergraduate, graduate, and post-doctoral scientists.The investigators are creating and studying atomically precise nanowires and nanoribbons of silicon that have been functionalized so they can be studied in unimolecular electrical devices. The design and synthesis of rigid, strained, and functional nanowires and nanoribbons of silicon is being used to test the impact of strain on single molecule conductance. Nanoscopic probes developed in this project are allowing the assembly and integration of these new nanomaterials into electrical devices. The combination of expertise among team members working in concert is allowing advanced molecules to be designed, synthesized, and studied in a feedback loop. This approach to research fosters a holistic understanding of these unique one-dimensional chains of silicon atoms and enhances the probability that new properties and devices will be discovered.
哥伦比亚大学的Colin Nuckolls,James Leighton和Latha Venkataraman都由化学系的大分子,超分子和纳米化学项目资助,用于研究开发设计,创建和研究硅原子单分子链和带的方法。当然,纯硅广泛用于电子和信息技术行业,并因其作为半导体的特性而受到高度重视。它的半导体性质是在原子水平上产生的分子和电子性质的结果。随着硅基设备(如计算机芯片和信息存储介质)的尺寸变小,硅的电学特性发生了变化。研究人员正在使用精确的分子结构技术来制造具有特定形状和特性的高导电硅形式,这些形状和特性以前从未被研究过。特别是,他们正在研究微小的硅带和硅线,这些硅带和硅线有望成为未来电子设备的发展方向。这个合作项目将信息技术的基石体硅的性质与硅的分子形式明确联系起来,因此对半导体行业产生了广泛的影响。该项目通过跨K-8外展、课程开发和本科生、研究生和博士后科学家的研究培训的协调努力产生了更广泛的影响。研究人员正在创造和研究原子精确的硅纳米线和纳米带,这些纳米线和纳米带已经被功能化,以便可以在单分子电子器件中进行研究。设计和合成的刚性,应变,和功能性纳米线和纳米带的硅被用来测试单分子电导应变的影响。该项目开发的纳米探针允许将这些新的纳米材料组装和集成到电子设备中。团队成员之间的专业知识相结合,使先进的分子被设计,合成,并在反馈回路中研究。这种研究方法促进了对这些独特的一维硅原子链的全面理解,并提高了发现新特性和器件的可能性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Nuckolls其他文献

Reversible excited state electron transfer in an acceptor–acceptor hetero dyad
受体-受体杂二聚体中的可逆激发态电子转移
  • DOI:
    10.1039/d5sc01397f
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Jesper Dahl Jensen;Shayan Louie;Yanmei He;Junsheng Chen;Colin Nuckolls;Bo W. Laursen
  • 通讯作者:
    Bo W. Laursen
Chemical principles of single-molecule electronics
单分子电子学的化学原理
  • DOI:
    10.1038/natrevmats.2016.2
  • 发表时间:
    2016-02-23
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Timothy A. Su;Madhav Neupane;Michael L. Steigerwald;Latha Venkataraman;Colin Nuckolls
  • 通讯作者:
    Colin Nuckolls
Contorted Polycyclic Aromatics
  • DOI:
    10.1021/ar500355d
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
  • 作者:
    Melissa Ball;Yu Zhong;Ying Wu;Christine Schenck;Fay Ng;Michael Steigerwald;Shengxiong Xiao;Colin Nuckolls
  • 通讯作者:
    Colin Nuckolls
A single-molecule blueprint for synthesis
用于合成的单分子蓝图
  • DOI:
    10.1038/s41570-021-00316-y
  • 发表时间:
    2021-08-25
  • 期刊:
  • 影响因子:
    51.700
  • 作者:
    Ilana Stone;Rachel L. Starr;Yaping Zang;Colin Nuckolls;Michael L. Steigerwald;Tristan H. Lambert;Xavier Roy;Latha Venkataraman
  • 通讯作者:
    Latha Venkataraman
High Temporal- and Spatial-Resolution Studies of a Helix-to-Coil Transition that Controls the Switching Mechanism of a Riboswitch
  • DOI:
    10.1016/j.bpj.2017.11.2402
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Jason Hon;Nathan S. Daly;Scott M. Trocchia;Colin Nuckolls;Kenneth L. Shepard;Ruben L. Gonzalez
  • 通讯作者:
    Ruben L. Gonzalez

Colin Nuckolls的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Nuckolls', 18)}}的其他基金

Chiral Electronic Materials
手性电子材料
  • 批准号:
    2304946
  • 财政年份:
    2023
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Continuing Grant
Ultra-Long Polyradicaloid Wires for Single-Molecule Electronics
用于单分子电子学的超长多自由基线
  • 批准号:
    2204008
  • 财政年份:
    2022
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Tuning Graphene Nanoribbon Properties with Non-hexagonal Rings
合作研究:用非六角环调节石墨烯纳米带性能
  • 批准号:
    2203660
  • 财政年份:
    2022
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Standard Grant
Columbia University MRSEC on Precision-Assembled Quantum Materials
哥伦比亚大学精密组装量子材料 MRSEC
  • 批准号:
    2011738
  • 财政年份:
    2020
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Cooperative Agreement
Porous Organic Solid-State Materials for Energy Storage
用于储能的多孔有机固态材料
  • 批准号:
    2002634
  • 财政年份:
    2020
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Continuing Grant
Molecular Conductance and Induced Reactivity in Group 14 Constructs
第 14 组构建体中的分子电导和诱导反应性
  • 批准号:
    1764256
  • 财政年份:
    2018
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Continuing Grant
Acquisition of a 400 MHz Cyber-Enabled Nuclear Magnetic Resonance Spectrometer for Teaching and Research
采购 400 MHz 网络核磁共振波谱仪用于教学和研究
  • 批准号:
    0840451
  • 财政年份:
    2009
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Standard Grant
NIRT: Molecular electronic devices with carbon-based electrodes on active substrates
NIRT:活性基底上具有碳基电极的分子电子器件
  • 批准号:
    0707748
  • 财政年份:
    2007
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Standard Grant
SGER: High Performance Printable Organic Semiconductors
SGER:高性能可印刷有机半导体
  • 批准号:
    0408059
  • 财政年份:
    2004
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Standard Grant
CAREER: Functional Nanoscale Architectures by Self-Assembly
职业:通过自组装实现功能性纳米级架构
  • 批准号:
    0237860
  • 财政年份:
    2003
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Continuing Grant

相似海外基金

New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
  • 批准号:
    2403736
  • 财政年份:
    2024
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Standard Grant
AtomCat4Fuel: Atomically construction of AuPd catalyst for efficient CO2 hydrogenation to ethanol
AtomCat4Fuel:原子构建 AuPd 催化剂,用于高效 CO2 加氢生成乙醇
  • 批准号:
    EP/Y029305/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Fellowship
CAREER: Atomically-Precise Single Photon Emitters
职业:原子级精确的单光子发射器
  • 批准号:
    2340398
  • 财政年份:
    2024
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Continuing Grant
Harnessing Interlayer Biexcitons in Atomically Thin Heterostructures
利用原子薄异质结构中的层间双激子
  • 批准号:
    DP240101011
  • 财政年份:
    2024
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Discovery Projects
Liquid metal solvents for high entropy and atomically configured systems
用于高熵和原子配置系统的液态金属溶剂
  • 批准号:
    DP240101086
  • 财政年份:
    2024
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Discovery Projects
Development of atomically precise nano-molecular composite for investigation and exploration of their structure and properties
开发原子级精确的纳米分子复合材料,用于研究和探索其结构和性能
  • 批准号:
    23H01917
  • 财政年份:
    2023
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optical properties and device physics of mixed-dimensional heterostructures constructed from atomically defined nanomaterials
由原子定义的纳米材料构建的混合维异质结构的光学特性和器件物理
  • 批准号:
    23H00262
  • 财政年份:
    2023
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Quantum Nanophotonics with Atomically Thin Materials
原子薄材料的量子纳米光子学
  • 批准号:
    FT220100053
  • 财政年份:
    2023
  • 资助金额:
    $ 81.71万
  • 项目类别:
    ARC Future Fellowships
Elucidation of electrocatalytic activity of atomically precise metal clusters for the creation of highly active energy and environmental catalysts
阐明原子精确金属簇的电催化活性,用于创建高活性能源和环境催化剂
  • 批准号:
    23KK0098
  • 财政年份:
    2023
  • 资助金额:
    $ 81.71万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
ATomicallY Precise nanorIbbons QUAntum pLatform
原子级精确纳米带量子平台
  • 批准号:
    10076990
  • 财政年份:
    2023
  • 资助金额:
    $ 81.71万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了