Enhance Exciton Transport in Perovskite Quantum Dot Solids through Coherent Interactions
通过相干相互作用增强钙钛矿量子点固体中的激子传输
基本信息
- 批准号:2004339
- 负责人:
- 金额:$ 54.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project uses ultrafast lasers to make “movies” of light energy traveling between tiny semiconductor nanoparticles known as quantum dots. These quantum dots are efficient light absorbers and potentially useful for devices such as solar cells or light emitting diodes. In a device, quantum dots must be closely packed together in order to facilitate energy transfer from one quantum dot to the next. As a result, the distance between quantum dots and the speed at which energy migrates has a strong effect on device efficiency. By imaging how energy moves in quantum dot solids with different packings, this research aims to provide guidelines for designing structures for efficient light energy harvesting through control of energy migration rates. To achieve these goals, synthetic strategies are developed to control the size of the quantum dots and the chemical linkers used to connect them. Then, these quantum dots are used as “artificial atoms” and assembled into well-ordered structures known as superlattices. The research team also develops microscopy techniques to record fast energy transfer events with a resolution of 10 femtoseconds (a femtosecond is one quadrillionth of a second) and to image energy migration distances with a resolution of 50 nanometers (a nanometer is one billionth of a meter). The research and educational activities are integrated to educate the next generation of solar energy researchers through K-12, undergraduate, and graduate science education. The PIs partner with Science Express and AP Fridays at Purdue to involve K-12 students in a cutting-edge laboratory environment. Results from this project are utilized to educate the general public on new solar energy technologies using podcast and video media.Long-range exciton transport and coherence in colloidal quantum dot solids are highly desirable for their optoelectronic and quantum information applications. However, exciton transport in colloidal quantum dot solids thus far has been almost exclusively realized in the incoherent regime with excitons localized in individual quantum dots due to the relatively large energetic disorder compared to the electronic coupling strength in these systems. Incoherent transport of localized excitons presents a major limitation in obtaining long-range coherence and transport. In this project, strong dipole-dipole interactions between perovskite quantum dots are leveraged to enhance transport by promoting coherent motion of delocalized excitons. The team elucidates transport mechanisms by employing ultrafast coherent microscopy with ~10 fs time resolution and better than 50 nm spatial resolution. Exciton propagation distance, delocalization length, and coherent transport contributions are measured as a function of temperature. The extent of exciton delocalization is systematically controlled by varying inter-particle distance, electronic coupling, and dimensionality using ligand chemistry. The project provides guidelines for designing excitonic materials using perovskite quantum dots as building blocks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目使用超快激光在被称为量子点的微小半导体纳米粒子之间制造光能的“电影”。这些量子点是有效的光吸收剂,对太阳能电池或发光二极管等设备有潜在的用处。在设备中,量子点必须紧密地排列在一起,以促进能量从一个量子点转移到下一个量子点。因此,量子点之间的距离和能量迁移的速度对器件效率有很大的影响。通过成像能量如何在不同包装的量子点固体中移动,本研究旨在通过控制能量迁移率为设计有效光能收集的结构提供指导。为了实现这些目标,研究人员开发了合成策略来控制量子点的大小和用于连接它们的化学连接剂。然后,这些量子点被用作“人造原子”,并组装成有序的超晶格结构。研究小组还开发了显微镜技术,以10飞秒(1飞秒是1千万亿分之一秒)的分辨率记录快速能量转移事件,并以50纳米(1纳米是10亿分之一米)的分辨率成像能量迁移距离。研究和教育活动被整合在一起,通过K-12、本科和研究生的科学教育来教育下一代太阳能研究人员。pi与Science Express和普渡大学的AP Fridays合作,让K-12学生参与到尖端的实验室环境中。这个项目的成果被用来利用播客和视频媒体向公众宣传新的太阳能技术。胶体量子点固体中的远程激子输运和相干性在其光电和量子信息应用中是非常理想的。然而,由于与这些系统中的电子耦合强度相比,胶体量子点固体中的激子输运相对较大,因此到目前为止,激子输运几乎完全是在非相干状态下实现的,激子局限于单个量子点。局域激子的非相干输运是获得远程相干输运的主要限制。在这个项目中,钙钛矿量子点之间的强偶极子-偶极子相互作用被利用来通过促进离域激子的相干运动来增强输运。该团队通过使用超快相干显微镜阐明了传输机制,该显微镜具有~10 fs的时间分辨率和优于50 nm的空间分辨率。激子传播距离、离域长度和相干输运贡献作为温度的函数来测量。激子离域的程度系统地通过改变粒子间距离、电子耦合和使用配体化学的维数来控制。该项目为使用钙钛矿量子点作为构建块设计激子材料提供了指导方针。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Superradiance and Exciton Delocalization in Perovskite Quantum Dot Superlattices
- DOI:10.1021/acs.nanolett.2c02427
- 发表时间:2022-09-21
- 期刊:
- 影响因子:10.8
- 作者:Blach, Daria D.;Lumsargis, Victoria A.;Huang, Libai
- 通讯作者:Huang, Libai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Libai Huang其他文献
Frozen non-equilibrium dynamics of exciton Mott insulators in moiré superlattices
莫尔超晶格中激子莫特绝缘体的冻结非平衡动力学
- DOI:
10.1038/s41563-025-02135-8 - 发表时间:
2025-03-03 - 期刊:
- 影响因子:38.500
- 作者:
Shibin Deng;Heonjoon Park;Jonas Reimann;Jonas M. Peterson;Daria D. Blach;Meng-Jia Sun;Tengfei Yan;Dewei Sun;Takashi Taniguchi;Kenji Watanabe;Xiaodong Xu;Dante M. Kennes;Libai Huang - 通讯作者:
Libai Huang
Tunnelling electrons locally ignite excitons
- DOI:
10.1038/s41563-023-01514-3 - 发表时间:
2023-03 - 期刊:
- 影响因子:41.2
- 作者:
Libai Huang - 通讯作者:
Libai Huang
Superradiant and subradiant states in lifetime-limited organic molecules through laser-induced tuning
通过激光诱导调谐研究寿命有限的有机分子的超辐射和亚辐射态
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:19.6
- 作者:
C. Lange;E. Daggett;V. Walther;Libai Huang;J. D. Hood - 通讯作者:
J. D. Hood
Early-Career and Emerging Researchers in Physical Chemistry Volume 2.
物理化学领域的早期职业和新兴研究人员第 2 卷。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.3
- 作者:
A. Alexandrova;J. Biteen;S. Coriani;F. Geiger;A. Gewirth;G. Goward;Hua Guo;Libai Huang;Jianfeng Li;T. Liedl;Stephan Link;Zhi;S. Maiti;A. Orr;David L Osborn;J. Pfaendtner;Benoı T Roux;Friederike Schmid;J. R. Schmidt;William F. Schneider;L. Slipchenko;G. Solomon;J. V. van Bokhoven;V. Van Speybroeck;Shen Ye;T. D. Crawford;M. Zanni;G. Hartland;J. Shea - 通讯作者:
J. Shea
Celebrating Women in Physical Chemistry in China.
庆祝中国物理化学领域的女性。
- DOI:
10.1021/acs.jpcb.4c03073 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Libai Huang;Zhimei Sun - 通讯作者:
Zhimei Sun
Libai Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Libai Huang', 18)}}的其他基金
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
- 批准号:
2324299 - 财政年份:2023
- 资助金额:
$ 54.15万 - 项目类别:
Standard Grant
Ultrafast Imaging of Molecular Polariton Transport: Competition between Coherence and Localization
分子极化子传输的超快成像:相干性和定位之间的竞争
- 批准号:
2154388 - 财政年份:2022
- 资助金额:
$ 54.15万 - 项目类别:
Standard Grant
MRI: Development of a Machine Learning Multimodal Ultrafast Optical Microscope
MRI:机器学习多模态超快光学显微镜的开发
- 批准号:
2117616 - 财政年份:2021
- 资助金额:
$ 54.15万 - 项目类别:
Standard Grant
CAREER: Ultrafast Nanoscopy of Energy Transport in Molecular Assemblies
职业:分子组装中能量传输的超快纳米显微镜
- 批准号:
1555005 - 财政年份:2016
- 资助金额:
$ 54.15万 - 项目类别:
Continuing Grant
Femtosecond Microscopy of Charge Transport in Perovskite Thin Films
钙钛矿薄膜中电荷传输的飞秒显微镜
- 批准号:
1507803 - 财政年份:2015
- 资助金额:
$ 54.15万 - 项目类别:
Standard Grant
相似海外基金
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
- 批准号:
2868548 - 财政年份:2023
- 资助金额:
$ 54.15万 - 项目类别:
Studentship
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
- 批准号:
2321302 - 财政年份:2023
- 资助金额:
$ 54.15万 - 项目类别:
Standard Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
- 批准号:
2321301 - 财政年份:2023
- 资助金额:
$ 54.15万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
- 批准号:
2401851 - 财政年份:2023
- 资助金额:
$ 54.15万 - 项目类别:
Standard Grant
Development of next-generation quantum dynamical simulation methods with applications to charge and exciton transport in nanoscale molecular materials
开发下一代量子动力学模拟方法,应用于纳米级分子材料中的电荷和激子传输
- 批准号:
2729533 - 财政年份:2022
- 资助金额:
$ 54.15万 - 项目类别:
Studentship
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
- 批准号:
2154448 - 财政年份:2022
- 资助金额:
$ 54.15万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
- 批准号:
2154449 - 财政年份:2022
- 资助金额:
$ 54.15万 - 项目类别:
Standard Grant
Study and control of long-range exciton transport in organic and hybrid nanostructures for future exciton-based electronics
研究和控制有机和混合纳米结构中的长程激子输运,用于未来基于激子的电子产品
- 批准号:
21K18927 - 财政年份:2021
- 资助金额:
$ 54.15万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Spin-valley information and energy transport via directed exciton currents in two-dimensional semiconductors
二维半导体中通过定向激子电流的自旋谷信息和能量传输
- 批准号:
462503440 - 财政年份:2021
- 资助金额:
$ 54.15万 - 项目类别:
WBP Fellowship
Fabrication of novel excitonic devices using flux-controlled sputter epitaxy and study of exciton transport in the devices
利用通量控制溅射外延制造新型激子器件并研究器件中的激子输运
- 批准号:
18H01206 - 财政年份:2018
- 资助金额:
$ 54.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




