Femtosecond Microscopy of Charge Transport in Perovskite Thin Films

钙钛矿薄膜中电荷传输的飞秒显微镜

基本信息

  • 批准号:
    1507803
  • 负责人:
  • 金额:
    $ 42.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Non-technical description:Charge transport in semiconductors is an important process that determines efficiency for devices such as solar cells and light emitting diodes. Perovskite materials, a new class of semiconductors, are very promising alternatives to silicon because of their extreme low cost and ease of fabrication with abundant starting materials. In the past 5 years, perovskite solar cells have demonstrated efficiency approaching 20%, surpassing other technologies including organic and amorphous silicon solar cells. A major research challenge is an incomplete understanding of the relationship between charge transport properties and film structure, which prevents a rational approach in material design. This research addresses this challenge by unraveling limiting factors for charge transport in perovskite thin films by directly imaging how charges move in space and in time to enable design principles for achieving efficient charge transport. The interdisciplinary nature of the project provides a perfect platform for training K-12, undergraduate, and graduate students to gain experience at the frontiers of nanotechnology and renewable energy research. Technical description:Perovskite thin films are highly promising for next generation solar cell applications. A major difficulty in unraveling mechanisms controlling charge transport relevant for device efficiency lies in the complex and heterogeneous morphology of these perovskite thin films. A comprehensive understanding of how charge carrier dynamics and transport are affected by morphology is required for the design of optimal devices. Addressing this challenge requires experimental tools that are capable of mapping morphology-dependent dynamics and transport directly with simultaneous spatial and temporal resolutions. In this project, femtosecond transient absorption microscopy provides first-of-a-kind measurements of charge transport in space and time and across grain boundaries in perovskite thin films. Charge populations and dynamics following photoexcitation are imaged with simultaneous ~200 fs temporal resolution and ~50 nm spatial precision. To gain understanding of how morphology such as crystallinity, domain size, and grain boundary affect transport, transient absorption microscopy is correlated with atomic force microscopy and X-Ray scattering measurements. This research unravels the relationship between charge transport and morphology to provide rational design principles for efficient devices.
非技术描述:半导体中的电荷传输是决定太阳能电池和发光二极管等设备效率的重要过程。钙钛矿材料是一种新型的半导体材料,由于其成本极低,原料丰富,易于制备,是一种非常有前途的硅替代物。在过去的5年里,钙钛矿型太阳能电池的效率接近20%,超过了包括有机和非晶硅太阳能电池在内的其他技术。一个主要的研究挑战是对电荷输运性质和薄膜结构之间的关系的不完全理解,这阻碍了材料设计的合理方法。这项研究通过直接成像电荷在空间和时间上的移动来揭示钙钛矿薄膜中电荷传输的限制因素,从而解决了这一挑战,从而实现了实现有效电荷传输的设计原则。该项目的跨学科性质为培训K-12、本科生和研究生在纳米技术和可再生能源研究的前沿获得经验提供了一个完美的平台。技术描述:钙钛矿型薄膜在下一代太阳能电池中具有很高的应用前景。揭示与器件效率相关的电荷传输控制机制的一个主要困难在于这些钙钛矿型薄膜的复杂而不均匀的形貌。为了设计最优的器件,需要全面地了解电荷载流子动力学和输运是如何受到形貌的影响的。应对这一挑战需要能够以同时的空间和时间分辨率直接绘制依赖于形态的动力学和传输的实验工具。在这个项目中,飞秒瞬时吸收显微镜首次提供了钙钛矿薄膜中电荷在空间和时间以及跨晶界传输的测量。以~200fs的时间分辨率和~50 nm的空间精度对光激发后的电荷布居和动力学进行了成像。为了了解结晶度、微区大小和晶界等形貌对输运的影响,瞬时吸收显微镜与原子力显微镜和X射线散射测量相关联。本研究揭示了电荷输运与形貌之间的关系,为高效器件的设计提供了合理的依据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Libai Huang其他文献

Frozen non-equilibrium dynamics of exciton Mott insulators in moiré superlattices
莫尔超晶格中激子莫特绝缘体的冻结非平衡动力学
  • DOI:
    10.1038/s41563-025-02135-8
  • 发表时间:
    2025-03-03
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Shibin Deng;Heonjoon Park;Jonas Reimann;Jonas M. Peterson;Daria D. Blach;Meng-Jia Sun;Tengfei Yan;Dewei Sun;Takashi Taniguchi;Kenji Watanabe;Xiaodong Xu;Dante M. Kennes;Libai Huang
  • 通讯作者:
    Libai Huang
Tunnelling electrons locally ignite excitons
  • DOI:
    10.1038/s41563-023-01514-3
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Libai Huang
  • 通讯作者:
    Libai Huang
Superradiant and subradiant states in lifetime-limited organic molecules through laser-induced tuning
通过激光诱导调谐研究寿命有限的有机分子的超辐射和亚辐射态
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    C. Lange;E. Daggett;V. Walther;Libai Huang;J. D. Hood
  • 通讯作者:
    J. D. Hood
Early-Career and Emerging Researchers in Physical Chemistry Volume 2.
物理化学领域的早期职业和新兴研究人员第 2 卷。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    A. Alexandrova;J. Biteen;S. Coriani;F. Geiger;A. Gewirth;G. Goward;Hua Guo;Libai Huang;Jianfeng Li;T. Liedl;Stephan Link;Zhi;S. Maiti;A. Orr;David L Osborn;J. Pfaendtner;Benoı T Roux;Friederike Schmid;J. R. Schmidt;William F. Schneider;L. Slipchenko;G. Solomon;J. V. van Bokhoven;V. Van Speybroeck;Shen Ye;T. D. Crawford;M. Zanni;G. Hartland;J. Shea
  • 通讯作者:
    J. Shea
Celebrating Women in Physical Chemistry in China.
庆祝中国物理化学领域的女性。

Libai Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Libai Huang', 18)}}的其他基金

Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324299
  • 财政年份:
    2023
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Standard Grant
Ultrafast Imaging of Molecular Polariton Transport: Competition between Coherence and Localization
分子极化子传输的超快成像:相干性和定位之间的竞争
  • 批准号:
    2154388
  • 财政年份:
    2022
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Standard Grant
MRI: Development of a Machine Learning Multimodal Ultrafast Optical Microscope
MRI:机器学习多模态超快光学显微镜的开发
  • 批准号:
    2117616
  • 财政年份:
    2021
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Standard Grant
Enhance Exciton Transport in Perovskite Quantum Dot Solids through Coherent Interactions
通过相干相互作用增强钙钛矿量子点固体中的激子传输
  • 批准号:
    2004339
  • 财政年份:
    2020
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Standard Grant
CAREER: Ultrafast Nanoscopy of Energy Transport in Molecular Assemblies
职业:分子组装中能量传输的超快纳米显微镜
  • 批准号:
    1555005
  • 财政年份:
    2016
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Continuing Grant

相似海外基金

An investigation of charge-transfer dynamics in organic photovoltaics using time- and angle-resolved photoemission spectroscopy and scanning tunnelling microscopy
使用时间和角度分辨光电子能谱和扫描隧道显微镜研究有机光伏中的电荷转移动力学
  • 批准号:
    547073-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
An investigation of charge-transfer dynamics in organic photovoltaics using time- and angle-resolved photoemission spectroscopy and scanning tunnelling microscopy
使用时间和角度分辨光电子能谱和扫描隧道显微镜研究有机光伏中的电荷转移动力学
  • 批准号:
    547073-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
An investigation of charge-transfer dynamics in organic photovoltaics using time- and angle-resolved photoemission spectroscopy and scanning tunnelling microscopy
使用时间和角度分辨光电子能谱和扫描隧道显微镜研究有机光伏中的电荷转移动力学
  • 批准号:
    547073-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Visualizing Charge Carrier Dynamics in Transition Metal Dichalcogenide Nanoflakes Using Femtosecond Pump-Probe Microscopy
使用飞秒泵浦探针显微镜可视化过渡金属二硫属化物纳米片中的载流子动力学
  • 批准号:
    1764228
  • 财政年份:
    2018
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Standard Grant
Development of operand measurement method of structure/charge and discharge characteristics for all-solid-state rechargeable battery using helium ion microscopy
氦离子显微镜全固态充电电池结构/充放电特性操作数测量方法的开发
  • 批准号:
    16K14104
  • 财政年份:
    2016
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Origin elucidation of the problems in the interface electric charge transportation phenomenon using scanning nonlinear dielectric microscopy
使用扫描非线性介电显微镜阐明界面电荷传输现象问题的根源
  • 批准号:
    16H06360
  • 财政年份:
    2016
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Visualizing Charge Carrier Dynamics in Semiconductor Nanowires Using Femtosecond Pump-Probe Microscopy
使用飞秒泵浦探针显微镜可视化半导体纳米线中的载流子动力学
  • 批准号:
    1464776
  • 财政年份:
    2015
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Continuing Grant
Measurements of the charge state of a molecule on a solid substrate on the basis of scanning probe microscopy
基于扫描探针显微镜测量固体基质上分子的电荷状态
  • 批准号:
    26630330
  • 财政年份:
    2014
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Assembly and charge transfer mechanism of nanostructures on insulator surfaces using atomic force microscopy
使用原子力显微镜研究绝缘体表面纳米结构的组装和电荷转移机制
  • 批准号:
    25246027
  • 财政年份:
    2013
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Investigating the influence of defects on charge carrier properties in resistive switching with near-field optical microscopy and spectroscopy (B05)
利用近场光学显微镜和光谱研究电阻开关中缺陷对载流子特性的影响 (B05)
  • 批准号:
    202267494
  • 财政年份:
    2011
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了